

Indexed, Abstracted and Cited: Index Copernicus International (Europe), World Science Index, Polish Ministry of Science and Higher Education (Poland, Europe) Research Bible (Japan), Scientific Journals Impact Factor Master List, Directory of Research Journals Indexing (DRJI), Indian Science. In, Database Electronic Journals Library (Germany), Open J-Gate, J Gate e-Journal Portal, Info Base Index, International Impact Factor Services (IIFS) (Singapore), Scientific Indexing Services (USA), International Institute of Organized Research (I2OR), Cosmos Science Foundation (Germany), Science Library Index (UAE), Eye Source, Swedish Scientific Publication, World Cat, International Innovative Journal Impact Factor, Einstein Institute for Scientific Information {EISI} and Impact Factor.pl - Kompendiumwiedzy o czasopismachnaukowych, Philadelphia <u>citefactor.org</u> journalsindexingDirectory Indexing of International Research Journals

Published by Society for Advancement of Sciences®

J. Biol. Chem. Research. Vol. 40, No. 1, 108-129, 2023

(An International Peer Reviewed / Refereed Journal of Life Sciences and Chemistry) Ms 40/01/42/2023 All rights reserved <u>ISSN 2319-3077 (Online/Electronic)</u> <u>ISSN 0970-4973 (Print)</u>

Lubna Jamal http:// <u>www.sasjournals.com</u> http:// <u>www.jbcr.co.in</u> jbiolchemres@gmail.com

Received: 24/05/2023

Revised: 29/06/2023

RESEARCH PAPER Accepted: 30/06/2023

Stereoscopic Structural Assignment and DFT Studies of Novel Tetrasaccharide 'Taliose' from Gaddi Sheep Milk with rare 1→2 Glycosidic Linkage at Reducing end by 2D NMR and Mass Spectrometry

Lubna Jamal, Shraddha Rathor, Anil Mishra and Desh Deepak

Department of Chemistry, University of Lucknow, Lucknow, India

ABSTRACT

Carbohydrates are integral constituent of all living organisms and are associated with variety of vital functions, which sustain life. Oligosaccharide are amongst the most biologically diverse and important carbohydrate in biological system. The milk oligosaccharides inhibit the adherence of pathogens to target cells, hence oligosaccharides and their derivatives are used as therapeutic agents and form the basis for the development of anti-tumor vaccines and act as effective drugs in the therapy of pathogenic diseases. Sheep milk oligosaccharides contains fucose which is beneficial for skin diseases and cosmetic purposes., In the present study, to find biologically active novel milk oligoasaccharide, Sheep milk was processed by the method of Kobata and Ginsberg followed by gel filtration HPLC and column chromatography which resulted in the isolation of a novel milk oligosaccharide named Taliose. The structure of isolated and purified milk oligosaccharide was elucidated with the help of chemical degradation, chemical transformation, spectroscopy technique like NMR (¹H, ¹³C, and 2D NMR) and mass spectrometry. The novelty of this novel compound was that it contained Gal($1 \rightarrow 2$) β -Glc at its reducing end. It is the first report of any milk oligosaccharide with $1 \rightarrow 2$ glycosidic linkage at the reducing end. The structure of isolated novel oligosaccharide 'Taliose' was interpreted as tetrasaccharide having the following structure which is as under-

 β -Gal(1→3) β -GalNHAc(1→3) β -Gal(1→2) β -Glc

Taliose

Keywords: Carbohydrate, Sheep milk, Taliose and 2D NMR.

INTRODUCTION

Milk has processed a range of biologically active oligosaccharides that guard neonates and effects their physiological and pathological functions i.e., molecular reorganisation, signal transaction and exhibit varied biological activities such as anti-tumour (Shahani et al, 1983), anticancer (Rodríguez-Alcalá et al, 2017), immunostimulant (Saksena et al, 1999) and immunological (Fang et al, 1985). Oligosaccharides are an important constituent of milk, responsible for their biological activities. Amongst the various milk, the biological activity of sheep milk is well defined in Ayurveda and other ancient medicine literature. The constituents present in sheep milk have their affect in cardiovascular, nervus and immune system (Ranjan et al, 2015). Gaddi sheep's milk has highest amount of calcium and phosphate which potentially moisturises and nourishes the skin thus it is used to produce skin bars (Coni et al, 1996). Sheep milk protein is an important source of bioactive inhibitory and hypertensive defence and control of microbial infection. It also contains high levels of vitamins, minerals and amino acids, which are essential for the healing process and show homeostasis (Farag et al, 2020). The sheep milk aggravates hiccups and dyspnoea (Sushrut Sanhita). It elevates pitta and kapha. It also decreases the fat. In recent time, sheep milk has been used for enhancing the blood platelet count decreased during Dengue fever (Mahendru et al, 2011).

In view of the above fact, we have continued our studies on sheep milk for this purpose a rare species 'Gaddi Sheep' found at high altitude of Himalayan region was selected and its milk was collected in bulk and was processed by the modified method of Kobata and Ginsberg (Ranjan et al, 2015) involving deproteination, filtration, lyophilization followed by gel filtration, HPLC and column chromatography. During our course of investigation we have described the isolation of Oviose (Ranjan et al, 2015), Osiose (Singh et al, 2016), Ovinose (Ranjan et al, 2017), Ovisose (Sahu et al, 2017), Rieose (Shahi et al, 2017), Ariesose (Shahi et al, 2017) and Aliose (Jamal et al, 2023) and further isolated a novel tetrasaccharide, Taliose having a rare $1\rightarrow 2$ glycosidic linkage. Here, we are describing the structure elucidation of the novel Gaddi sheep milk tetrasaccharide, Taliose along with its Density Functional Theory (DFT) studies.

The quantum chemical calculations have been performed on B3LYP functional and 6-31G (d, p) basis set employing DFT. The geometry of compound Taliose was first optimized and the presence of positive wave number values for all the optimized geometry indicated the stability of the compound. All computations were performed using the Gaussian 09 program package.

MATERIALS AND METHODS

General Procedure

General procedure was same as in our previous articles (Jamal et al 2019).

Isolation of Gaddi Sheep milk Oligosaccharide by Modified Method of Kobata and Ginsberg (Jamal et al, 2023)

Sephadex G-25 gel Chromatography of Gaddi Sheep Milk Oligosaccharides (Jamal et al, 2023)

Acetylation of Sheep milk Oligosaccharides (Jamal et al, 2023)

12.8 gm of Oligosaccharides mixture was acetylated with pyridine (12.8 ml) and acetic anhydride (12.8 ml) at 60°C and solution was stirred overnight.

The mixture was evaporated under reduced pressure and viscous residue was taken in CHCl3 (250 ml) and washed twice by ice cold water which was further evaporated to dryness yielding the acetylated mixture (13.0 gm). The acetylation converted the free sugars into their non-polar acetyl derivatives which were resolved nicely on TLC [Cai, 2014], giving 8 spots i.e., a, b, c, d, e, f, g, and h from which compound Taliose acetate was finally separated by column chromatography over silica gel using varying proportions of hexane, chloroform and methanol as eluants.

Purification of Acetylated Oligosaccharide Mixture by Column Chromatography

Acetylated Sheep's milk oligosaccharides mixture (12.0 g) gave eight spots a, b, c, d, e, f, g and h, on TLC which on repeated column chromatography by various proportion of $CHCl_3$ and $CHCl_3$: MeOH resulted into isolation of compound (Taliose acetate) in pure form.

Deacetylation of Compound Taliose acetate (Kumar et al, 2019)

Tetrasaccharide Taliose acetate (30 mg) obtained from fractions 10 - 13 of column chromatography 3 of acetylated oligosaccharide mixture was dissolved in acetone (2 ml) and 2 ml of NH₃ was added and left overnight in a stoppered hydrolysis flask. After 24 h ammonia was removed under reduced pressure and the compound was washed with CHCl₃ and the water layer was finally freeze dried obtaining the deacetylated natural tetrasaccharide (14 mg).

Methylglycosidation/ Acid Hydrolysis of Compound Taliose (Agnihotri et al, 2019)

Compound Taliose (5mg) was refluxed with absolute MeOH (2 ml) at 70°C for 18h in the presence of cation exchange IR-120 (H) resin. The reaction mixture was filtered while hot and filtrate was concentrated. To a solution of methylglycoside of Taliose in 1,4-dioxane(1ml), 0.1 N H₂SO₄ (1 ml) was added and the solution was warmed for 30 minutes at 500°Cand solution was left over night. The hydrolysis was complete after 24h. The hydrolysate was neutralized with freshly prepared BaCO₃ filtered and concentrated under reduced pressure to afford α -and β -methylgalactosides along with the Glc, Gal and GalNHAc. Their identification was confirmed by comparison with authentic samples (TLC, PC).

Kiliani Hydrolysis of Compound Taliose (Ranjan et al, 2023)

Compound Taliose (4 mg) was dissolved in 2 ml Kiliani mixture (AcOH-H₂O-HCl, 7:11:2) and heated at 100°C for 1 h followed by evaporation under reduced pressure. It was dissolved in 2 ml of H₂O and extracted twice with 3ml CHCl₃. The aqueous residual solution was made neutral by addition of 1-2 drops of 2N NaOH to it and was evaporated under reduced pressure to afford glucose, galactose and GalNHAc on comparison with authentic samples of glucose, galactose and GalNHAc.

Description of Compound Taliose

Substance (30 mg) obtained from fractions 10-13 of column chromatography 3. On deacetylation of this acetylated tetrasaccharide with NH_3 /Acetone it afforded compound TALIOSE (14 mg) as a viscous mass.

For experimental analysis, this compound was dried over P_2O_5 at 1000 C and 0.1 mm pressure for 10 hr. It gave positive Phenol-sulphuric acid test and Morgon-Elson test.

C ₂₆ H ₄₅ O ₂₁ N	%C	%Н	%N
Calculated	44.13	6.36	1.98
Found	44.15	6.36	1.98

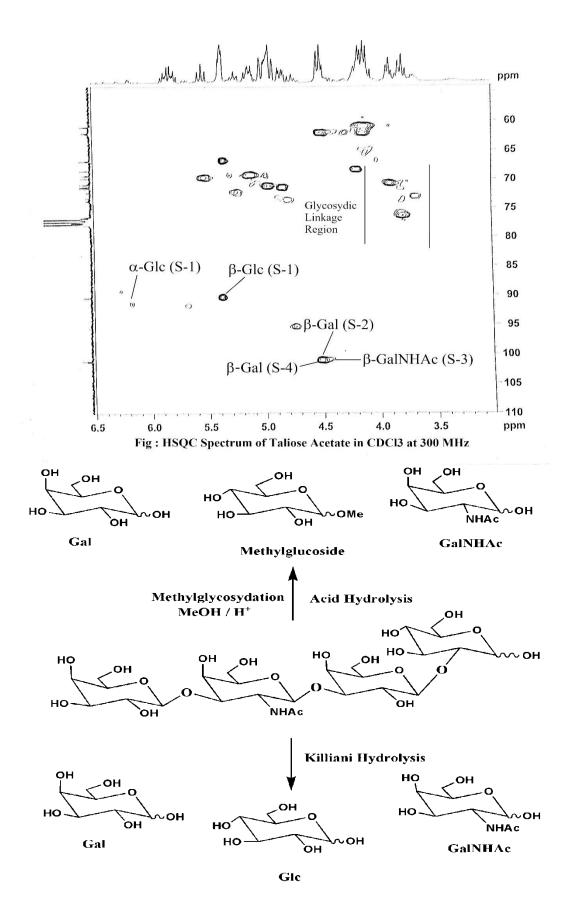
^1H NMR of Taliose acetate: δ in CDCl3 at 300 MHz-

δ 6.22 [d, 1H,α-Glc (S-1), H-1)],δ 5.4 [d, 1H, β-Glc (S-1), H-1)], 3.903 [m, 1H, β-Glc (S-1) H-2], 4.51 [d, 1H, J=6.0 Hz, β-Gal (S-2) H-1], 3.80 [m, 1H, β-Gal (S-2) H-3], 4.53 [d, 1H, J=6.0 Hz, β-GalNHAc (S-3), H-1], 3.90 [m, 1H, β-GalNHAc (S-3) H-3], 4.49 [d, 1H, J=9.0 β-Gal (S-4), H-1)]. ¹³C NMP of Tablese Accetate: δ in CDCL at 200 MHz

^{13}C NMR of Taliose Acetate: δ in CDCl3 at 300 MHz

δ 90.14 [1C,β-Glc (S-1), C-1], δ 101.01 [1C, β-Gal (S-2), C-1], δ 101.09 [1C, β-GalNHAc (S-3)], C-1], δ 101.01 [1C, β-Gal (S-4), C-1].

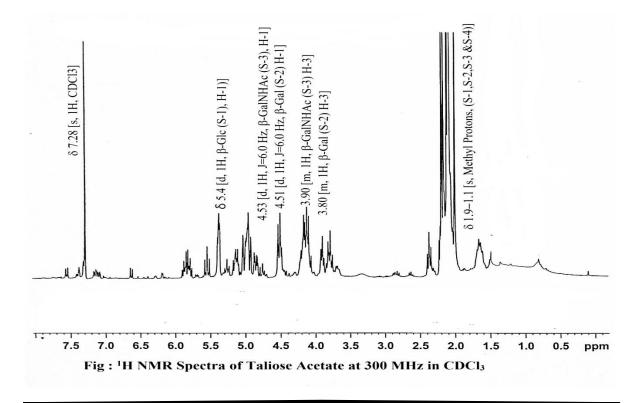
ES mass of Taliose


747[M+K+H]⁺,730[M+Na]⁺,708[M+H]+,707[M]⁺,710[M+3H]⁺,650[M+H+NHCOCH₃],617[M-HOCHCHOH-HCHO],610[650-2H₃O⁺-2H],575[617 CH₂CO],571[650-CH₃OH-H₂O-CHO],545[M-S4],533[617-2CH₂CO] OR [575-CH₂CO],491[533-617-CH₂CO] OR [617-3CH₂CO],418[491-CH₃CO-CHO],342[M-S4-S3],331[418-CH₃CO-CH₂CO],315 [331-CH₃-H⁺],289[331-CH₂CO] OR [418-CH₃CHO- 2CH₂CO],267[331-CH₃CHO-H₃O+H],247[331-2CH₂CO] OR [289-CH₂CO],231[247-CH₃-H+],214[231-OH],188 [231-CH₃CO],170[188-H₂O].

RESULTS AND DISCUSSION

Compound 'B', Taliose with molecular formula C26H45O21N was isolated from gaddi sheep milk into its acetylated form and designated as 'b' and gave positive phenol-sulphuric acid test test (Dubois et al, 1956), Feigl test (Figel et al, 1975) and Morgon-Elson test (Partridge et al, 1949) showing the presence of normal and amino sugar(s) in the oligosaccharide. The HSQC spectrum of acetylated Taliose in CDCl3 at 300 MHz showed the presence of five cross peaks of anomeric protons and carbons in the respective region at 2 6.26 x 90.0, 2 5.45 x 90.14, 2 4.52 x 101.01, 2 4.50 x 101.09 and 2 4.50 x 101.01 suggesting the presence of five anomeric protons and carbons in it. The presence of five anomeric protons were further confirmed by the presence of five anomeric proton doublets at δ 6.26 (1H), δ 5.45 (1H), δ 4.52 (1H), and δ 4.50 (2H) in the ¹H NMR spectrum of acetylated Taliose in CDCl3 at 300 MHz. The ¹³C NMR spectrum of Taliose acetate in CDCl3 at 300 MHz also confirmed the presence of five anomeric carbons at δ 90.0(1C), 90.14(1C), 101.01(2C) and 101.09(1C). The chemical shifts of α and β anomeric protons/carbons signals respectively at δ 6.26, δ 5.45 and 2 90.0, 2 90.14 confirmed that the reducing nature of oligosaccharide. The chemical shift value of α and β anomeric proton was having resemblance with the literature value of β -Glc thus the monosaccharide (S-1) was confirmed as β -Glc (Khan et al, 2017). The reducing nature of compound Taliose was further confirmed by its methylglycosidation by MeOH / H^{+} followed by its acid hydrolysis which led to the isolation of 2 and 2-methyl glucoside along with Gal and GalNHAc leading to the presence of glucose at the reducing end in the oligosaccharide.

spectrum.						
SUGAR	13 _C	1 _H				
S1	90.14	5.45				
S2	101.01	4.52				
S3	101.09	4.50				
S4	101.01	4.50				


Table 1. Assignment of anomeric protons and carbons of Taliose acetate by HSQC
spectrum

Methylglycosidation / Acid Hydrolysis and Killiani Hydrolysis of Taliose

The four monosaccharides present in compound have been designated as S-1, S-2, S-3, and S-4 for convenience starting from reducing end. The monosaccharide constituents in Taliose were also confirmed by its Killiani hydrolysis (Killiani et al, 1930) under strong acidic condition followed by paper chromatography and TLC. In this hydrolysis three spots were found identical with the authentic samples of Glc, Gal and GalNAc by co-chromatography (PC, TLC), which confirmed that Taliose contained three types of monosaccharide units i.e., Glc, Gal and GalNAc. The ¹H and ¹³C NMR spectra of Taliose justify the five anomeric signals for tetrasaccharide with total integral intensity of four anomeric protons and carbons. Further the mass ion peak at 707 [M]⁺ present in ES-MS of Taliose was in agreement with molecular formula of Taliose $C_{26}H_{45}O_{21}N$.

The anomeric proton signal present at $\delta 5.45$ in ¹H NMR Spectrum of Taliose acetate assigned to β -Glc (S-1) (Jamal et al, 2023) gave three cross peaks at $\delta 5.45x3.90$, $\delta 5.45x4.90$ and $\delta 5.45x5.5$ in TOCSY Spectrum of Taliose acetate which was later identified as H-2, H-3 and H-4 of reducing Glc respectively by COSY spectrum of Taliose acetate. The chemical shift of thecross peak at $\delta 5.45x3.90$ suggested that in glucose S-1, H-2 position was available for glycosidic linkage by next monosaccharide unit. Further the ¹H signal present at $\delta 3.90$ assigned to H-2 of reducing Glc (S-1) gave a cross peak at $\delta 3.90x101.01$ in HMBC spectrum of Taliose acetate which was between H-2 of reducing Glc and C-1 of S-2, confirmed the $(1\rightarrow 2)$ linkage between Glc (S-1) and S-2. The anomeric carbon of S-2 at $\delta 101.01$ gave its complimentary anomeric proton signal at $\delta 4.52$ (6.0 Hz) in the HSQC spectrum of Taliose acetate. The chemical shift values of anomeric carbon at $\delta 101.01$ and anomeric proton at $\delta 4.52$ were having resemblance with literature value of anomeric chemical shift value of Gal hence S-2 was confirmed as Gal (Jamal et al, 2023). The large coupling constant J=6.0 Hz of \mathbb{PI} Gal (S-2) confirmed the \mathbb{P} -configuration of the linkage between β -Glc (S- 1) and β -Gal (S-2).

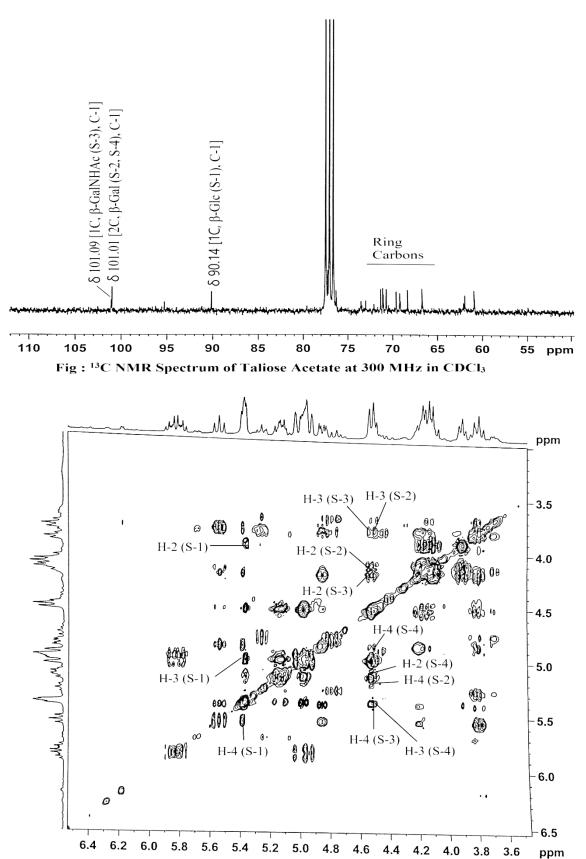
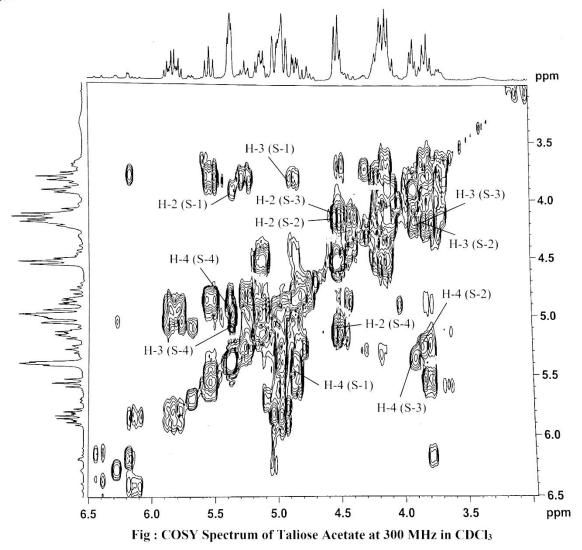
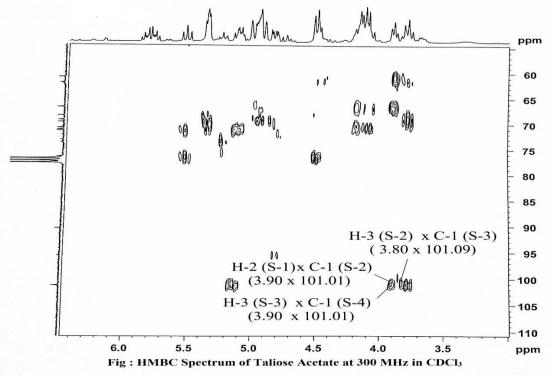



Fig : TOCSY Spectrum of Taliose Acetate at 300 MHz in CDCl₃


The next anomeric proton signal present at $\delta 4.52$ in ¹H NMR Spectrum of Taliose acetate assigned to β -Gal (S-2) gave three cross peaks at $\delta 4.52x3.80$, $\delta 4.52x4.20$ and $\delta 4.52x5.21$ in TOCSY Spectrum of Taliose acetate, which were later identified as H-3, H-2 and H-4 respectively with COSY spectrum of Taliose acetate. Out of these signals one proton signal at $\delta 3.80$ corresponded to H-3 position of β -Gal (S-2) suggested that H-3 was available for glycosidic linkage by the next monosaccharide unit. Further ¹H signal present at $\delta 3.80$ assigned to H-3 of Gal (S-2) gave a cross peak at $\delta 3.80x101.09$ in HMBC spectrum of Taliose acetate which was between H-3 of Gal (S-2) and C-1 of S-3, confirmed the (1 \rightarrow 3) linkage between Gal (S-2) and S-3. The anomeric carbon of S-3 at $\delta 101.09$ gave its complimentary anomeric proton signal at $\delta 4.50$ (6.0 Hz) in the HSQC spectrum of Taliose acetate. The chemical shift values of anomeric carbon at $\delta 101.09$ and anomeric proton at $\delta 4.50$ were having resemblance with literature value of anomeric chemical shift value of GalNHAc hence S-3 was confirmed as GalNHAc (Singh et al, 2016). The large coupling constant J=6.0 Hz of $\square \square GalNHAc$ (S-3) confirmed the \square -configuration of the linkage between β -Gal (S-2) and β -GalNHAc (S-3).

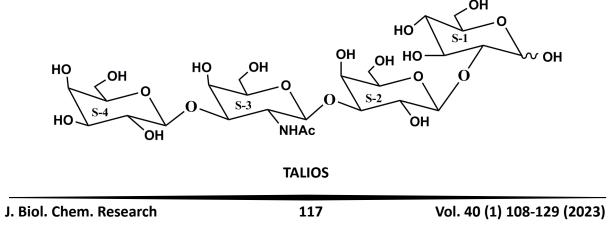
Vol. 40 (1) 108-129 (2023)

Further the anomeric proton signal present at $\delta4.50 \text{ in}^{1}\text{H}$ NMR Spectrum of Taliose acetate assigned to β -GalNHAc (S-3) gave three cross peaks at $\delta4.50x3.90$, $\delta4.50x4.10$ and $\delta4.50x5.40$ in TOCSY Spectrum of Taliose acetate, which were later identified as H-3, H-2 and H-4 respectively with COSY spectrum of Taliose acetate. Out of these signals one proton signal at $\delta3.90$ corresponded to H-3 position of β -GalNHAc (S-3) suggested that H-3 was available for glycosidic linkage by the next monosaccharide unit. ¹H signal present at $\delta3.90$ assigned to H-3 of GalNHAc (S-3) gave a cross peak at $\delta3.90x101.01$ in HMBC spectrum of Taliose acetate which was between H-3 of GalNHAc(S-3) and C-1 of S-4, confirmed the $(1\rightarrow3)$ linkage between GalNHAc (S-3) and S-4. The anomeric carbon of S-4 at $\delta101.01$ gave its complimentary anomeric proton signal at $\delta4.50$ (6.0 Hz) in the HSQC spectrum of Taliose acetate. The chemical shift values of anomeric carbon at $\delta101.01$ and anomeric proton at $\delta4.50$ were having resemblance with literature value of anomeric chemical shift value of Gal hence S-4 was confirmed as Gal (Yoon et al, 2003). The large coupling constant J=6.0 Hz of β -Gal (S- 4).

Further the next anomeric proton signal present at δ 4.50 in ¹H NMR Spectrum of Taliose acetate assigned to β -Gal (S-4) gave three cross peaks at δ 4.50x4.90, δ 4.50x5.10 and δ 4.50x5.40 in TOCSY Spectrum of Taliose acetate, which were later identified as H-4, H- 2 and H-3 respectively with COSY spectrum of Taliose acetate. Since in the TOCSY spectrum of Taliose acetate does not show any complementary methine signals of \mathbb{P} - Gal (S4) in glycosidic linkage region i.e., \mathbb{P} 3-4 showed that none of their OH groups were involved in glycosidic linkages suggested that \mathbb{P} -Gal(S-4) was present at the non- reducing end. All the ¹H NMR assignments for ring proton of monosaccharide units of Taliose were confirmed by COSY and TOCSY experiments.

ORDER OF S1	ORDER OF S2	ORDER OF S3	ORDER OF S4				
5.45	4.52	4.50	4.50				
3.90	3.80	3.90	4.90				
4.90	4.20	4.10	5.10				
5.5	5.21	5.40	5.40				

Table 2. Order of ring protons in monosaccharides assigned by TOCSY spectrum.


Table 3. Assignment of ring proton correlation by COSY spectrum of Taliose acetate.

NO. OF PROTON	ORDER OF S1	ORDER OF S2	ORDER OF S3	ORDER OF S4
H1	5.45	4.52	4.50	4.50
H2	3.903	4.20	4.10	5.1
H3	4.90	3.80	3.90	5.4
H4	5.5	5.21	5.40	4.90

Monosaccharide Linkages	HMBC cross peaks	TYPE OF LINKAGE
S1-S2	δ 3.90 × 101.01	1→2 (β-Gal→β-Glc S ₁)
S2-S3	δ 3.80 × 101.09	1→3 (β-GalNHAc→ β-Gal)
\$3-\$4	δ 3.90 × 101.01	1→3 (β-Gal→β-GalNHAc)

The heteronuclear single quantum coherence (HSQC) spectrum of acetylated compound Taliose confirmed linkages in ¹H and ¹³C NMR spectra by showing cross peaks of \square Glc(S1) H-2 and C-2 at (\square 3.903 x \square 71.06) showed (1 \square 2) linkage of S2 and S1 i.e., its 2- position of Glc (S1) were involved in linkage, \square Gal (S2) H-3 and C-3 (\square 3.80 x \square 76.61) showed (1 \square 3) linkage of S3 \square S2. \square GalNHAc (S3) H-3 and C-3 at (\square 3.90 x \square 71.28) showed (1 \square 3) linkage of S4 and S3 showing in the same chemical region in acetylated and deacetylated spectra. It was further confirmed by the presence of same peaks in COSY and TOCSY spectrum. Thus, based on the pattern of chemical shifts of ¹H, ¹³C, HOMOCOSY , and TOCSY, HSQC NMR experiments, it was interpreted that the compound Taliose was a tetrasaccharide consist of one Glc, two Gal and one GalNHAc moieties in it and having the following structure:

β -Gal(1→3) β-GalNHAc(1→3) β -Gal(1→2) β-Glc

MASS FRAGMENTATION

The Electrospray Mass Spectroscopy data of compound not only confirmed the derived structure but also supported the sequence of monosaccharide in Taliose. The highest mass ion peak was recorded at m/Z 731 and 747 which was due to [M+Na+H]⁺ and [M+K+H]⁺ respectively. The other mass ion peak recorded at m/Z 708 which was due to [M+H]⁺ confirming the molecular weight of Taliose as 707 and was in agreement with its molecular formula C₂₆H₄₅O₂₁N. Further the mass fragments were formed by repeated H transfer in the tetrasaccharide and was accompanied by the elimination of terminal sugar less H₂O. The tetrasaccharide m/Z 707 (I) fragmented to give mass ion at m/Z 545 (II) [707-162 (S4)], this fragment was arised due to loss of β -Gal (S₄) molety from tetrasaccharide .The fragment (II) at m/Z 545 was arised due to the loss of β -Gal (S₄) which further fragmented to give mass ion peak at m/z 342 (III) [545- 203(S₃)] which was a disaccharide (III), was arised due to loss of β -GalNAc (S₃) moiety from trisaccharide (II). The disaccharide (III) again fragmented to give mass ion peak at m/z 180 (IV) [342-162 (S_{21}], which was due to loss of Gal (S_2) moiety from disaccharide (III) .These three mass ion peak II, III, IV were appeared due to the consequent loss of S₄, S₃ and S₂ from original molecule. The other fragmentation pathway in ES-MASS spectrum of Taliose, m/z 707 shows the mass ion peaks at 726 [M+H₃O⁺], 710 [M+3H]⁺, 696 [710-CH₃⁺], 684 [717-H₂O-CH₃⁺-H], 675 [707-CH₃OH], 668 [710-CH₂CO], 660 [707-HCHO-OH] and [654 [668-CH₃⁺].

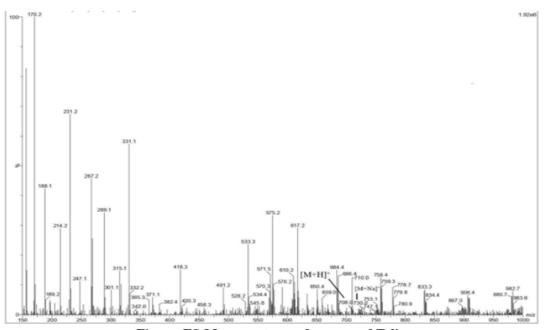
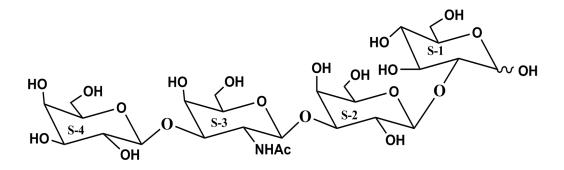
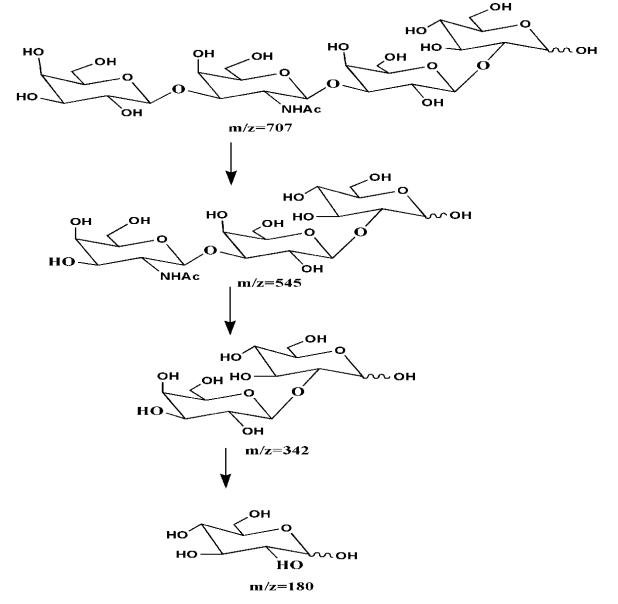
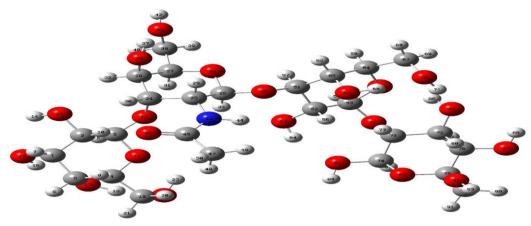




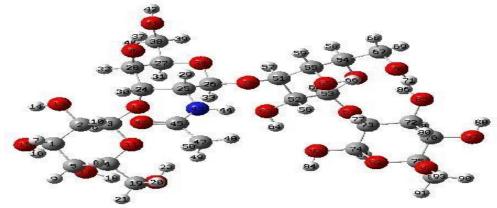
Figure: ES-Mass spectrum of compound Taliose

Based on results obtained from chemical degradation/acid hydrolysis, Chemical transformation, Electro spray mass spectrometry and ¹H, ¹³C NMR and HOMOCOSY, TOCSY and HSQC 2-D NMR techniques the structure and sequence of isolated sheep milk oligosaccharide molecule Taliose was deduced as -



MASS-FRAGMENTATION OF COMPOUND TALIOSE

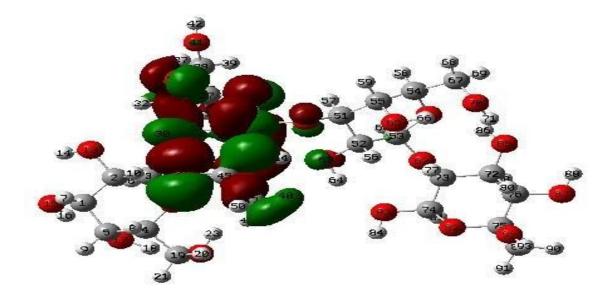
OPTIMISED STRUCTURE OF TALIOSE

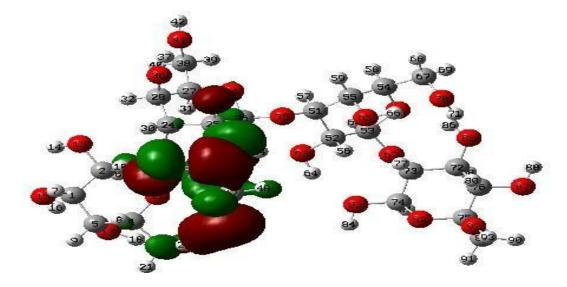


COMPUTAIONAL ANALYSIS OF ISOLATED OLIGOSACCHARIDE TALIOSE

The computational studies were performed on Taliose using Density Functional Theory (DFT) of Gaussian 09 W programme. For this, structure of Taliose was drawn on Gauss View 5.0 and was further optimized. The optimized structure was utilized for the calculations of molecular orbitals, i.e., HOMO and LUMO. Other evaluations like bond lengths, bond angles, molecular electrostatic potential and mulliken charges were also performed from the optimized geometry.

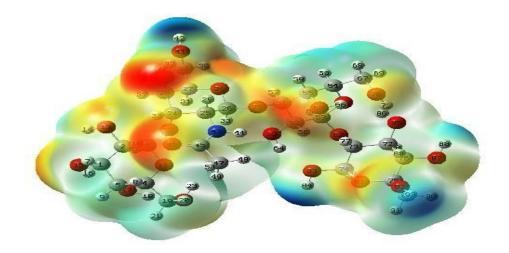
OPTIMISED STRUCTURE OF TALIOSE (Tiwari et al, 2023)


The structural geometry was optimized by minimizing its energies compared to all geometrical variables without forcing any molecular symmetry restrictions. The molecular structures of the optimized compounds were drawn by Gauss View 5.0.


FRONTIER MOLECULAR ORBITALS

Frontier molecular orbitals (FMOs) are the highest occupied molecular orbital (HOMO) with electrons, so it is an electron donor and the lowest unoccupied molecular orbital (LUMO) that has a space to accept electrons, so it is an electron acceptor. These orbitals control the mode of the interaction of the compounds with the receptors. Moreover, HOMO and LUMO are very important quantum chemical parameters to determine the reactivity of the molecules and are used to calculate many important parameters such as the chemical reactivity descriptors.

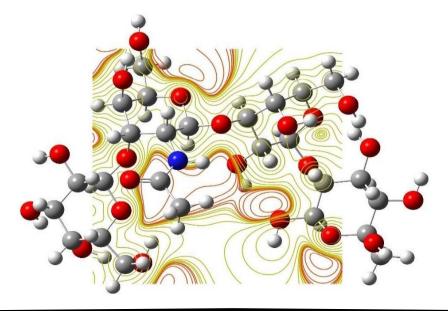
Structure of HOMO of Taliose



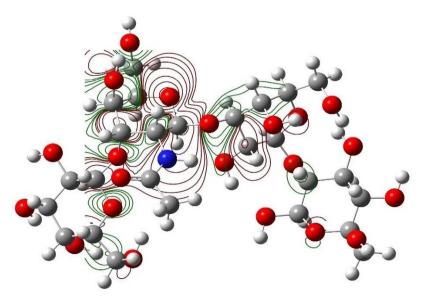
Structure of LUMO of Taliose

MOLECULAR ELECTROSTATIC POTENTIAL (Ghous et al, 2023)

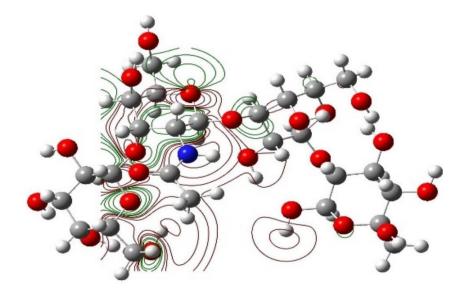
The MEP gives an indication about the molecular size and shape of the positive, negative as well as the neutral electrostatic potential. In the MEP, the maximum negative region is the preferred sites for electrophilic attack, indicated as red color. So, an attacking electrophile will be attracted by the negatively charged sites, and the opposite situation for the blue regions. It is obvious that the molecular size and the shape as well as the orientation of the negative, positive, and the neutral electrostatic potential varied according to the compound because of the type of the atoms and its electronic nature. The structure shows the total electron density is as under:


GLOBAL REACTIVITY DESCRIPTORS

The reactivity descriptors such as electronegativity (χ) = $-1/2(\epsilon LUMO + \epsilon HOMO)$, chemical potential (μ) = 1/2 ($\epsilon LUMO + \epsilon HOMO$), global hardness (η) = 1/2 ($\epsilon LUMO - \epsilon HOMO$), global softness (S) = $1/2\eta$ and electrophilicity index (ω) = $\mu 2/2\eta$ are good approach to predict global reactivity trends in the compound. Electronegativity, chemical potential (μ), global hardness (η), global softness (S), and electrophilicity index (ω) had been calculated and listed in the following table:


Sugar	НОМО	LUMO	E	χ	η	S	ω	μ
Taliose	-8.04	-1.649	7.09	5.70	3.44	0.08	1.440	5.34

COUNTOUR SURFACES – Various contour surfaces such as electrostatic potential contour surfaces, HOMO contour surfaces and LUMO contour surfaces of the isolated trisaccharide enTaliose were obtained by DFT calculations using Gauss 09W programme and B3LYP basis set and mentioned below-


1. Electrostatic Potential Contour Surface of Taliose

2. HOMO Contour Surfaces of Taliose

3. LUMO Contour Surfaces of Taliose

MULLIKEN CHARGES (Singh et al, 2016)

The Mulliken atomic charges of the estimated compounds were calculated by the DFT using B3LYP basis set, the data for compound is arranged in the following Table. It showed that the average charge on carbon atoms is approx. 0.22 and average charge on oxygen atoms is about -0.51. Compound Taliose has amino sugar therefore nitrogen atom is also present in the compound having -0.315544 mulliken charge on it. All oxygenshave negative charges and all carbons have positive charges only in Compound Taliose.

The positively charged centers are the most susceptible sites for nucleophilic attacks. However, the most negatively charged centers are the most susceptible sites for electrophilic one. Sum of mulliken charges is -0.0000.

S. NO.	ATOM	ATOM	CHARGES	S. NO.	ATOM	ATOM	CHARGES
	NO.				NO.		
1	1	С	0.223831	18	34	0	-0.526689
2	2	С	0.266857	19	35	0	-0.550873
3	3	С	0.516888	20	36	0	-0.235530
4	4	С	0.198176	21	38	С	0.273518
5	5	С	0.255048	22	41	0	-0.257881
6	11	0	-0.536382	23	43	Ν	-0.315544
7	12	0	-0.538458	24	45	С	0.556999
8	13	0	-0.244287	25	46	0	-0.514378
9	15	0	-0.233946	26	47	С	0.002894
10	17	0	-0.272493	27	51	С	0.286349
11	19	С	0.282691	28	61	0	-0.587504
12	22	0	-0.223922	29	62	0	-0.518941
13	24	С	0.266299	30	63	0	-0.232123
14	25	С	0.298122	31	65	0	-0.241754
15	26	С	0.504283	32	67	С	0.275614
16	27	С	0.234446	33	75	С	0.245515
17	28	С	0.280173	34	76	С	0.294568

The mulliken charges on the atoms of compound Taliose are mentioned in the following table:

BOND LENGTH

The theoretical calculation done by DFT using Gauss 09W programme, the C-C, C-H and C-O bond lengths were obtained and arranged in the following table. The data shows that the bond length for C-C single bond is approx. 1.5299 A° while bond length between C- H is approx. 1.1021.The bond length for O-H is 0.9688 while C-O bond length is 1.427. Taliose has amino-sugar therefore it has C-N and N-H bond lengths also. C25-N43 bond length is 1.4663, N43-C45 bond length is 1.3609 and N43-H44 bond length is 1.0125 A° .

PARAMETER	BOND	PARAMETER	BOND	PARAMETER	BOND
	LENGTH		LENGTH		LENGTH
C1-C2	1.5337	C26-O35	1.4320	C54-C67	1.5326
C1-C5	1.5320	C27-C28	1.5407	C55-H59	1.0989
C1-H7	1.0952	C27-H31	1.1001	C55-O65	1.4486
C1-015	1.4528	C27-O34	1.4697	O62-C73	1.4649
C2-C3	1.5208	C27-C38	1.5185	O63-H64	0.9844
C2-H6	1.0970	C28-H32	1.0987	O65-H66	0.9916
C2-013	1.4485	C28-O36	1.4468	C67-H68	1.0928
C3-H10	1.0954	O35-C51	1.4530	C67-H69	1.0964
C3-011	1.4689	O36-H37	0.9860	C67-O70	1.4583
C3-012	1.4109	C38-H39	1.0963	O70-H71	0.9911
C4-C5	1.5402	C38-H40	1.0984	C72-C73	1.5264

C4-H8	1.0998	C38-O41	1.4631	C72-C76	1.5251
C4-011	1.4654	O41-H42	0.9745	C72-H78	1.0985
C4-C19	1.5278	N43-H44	1.0125	C72-O85	1.4602
C5-H9	1.0995	N43-C45	1.3609	C73-C74	1.5188
C5-017	1.4576	C45-O46	1.2585	C73-H77	1.0927
O12-C24	1.4690	C45-C47	1.5205	C74-H81	1.1014
O13-H14	0.9813	C47-H48	1.0942	C74-082	1.4470
O15-H16	0.9853	C47-H49	1.0967	C74-083	1.4306
O17-H18	0.9899	C47-H50	1.0921	C75-C76	1.5350
C19-H20	1.0949	C51-C52	1.5245	C75-H79	1.1012
C19-H21	1.0915	C51-C55	1.5366	C75-O82	1.4720
C19-O22	1.4671	C51-H57	1.0968	C75-C89	1.5166
O22-H23	0.9846	C52-C53	1.5392	C76-H80	1.0952
C24-C25	1.5366	C52-H56	1.0896	C76-087	1.4508
C24-C28	1.5383	C52-O63	1.4458	O83-H84	0.9787
C24-H30	1.0886	C53-H60	1.0932	O85-H86	0.9929
C25-C26	1.5327	C53-O61	1.4662	O87-H88	0.9787
C25-H29	1.0968	C53-O62	1.4300	C89-H90	1.0969
C25-N43	1.4663	C54-C55	1.5401	C89-H91	1.0978
C26-H33	1.0943	C54-H58	1.1001	C89-O92	1.4520
C26-O34	1.4553	C54-O61	1.4711	O92-H93	0.9765

BOND ANGLE

Bond angle is a parameter which helps in the formation of molecular structure. In this study, different bond angles were calculated in the isolated compound Taliose. Values of calculated bond angles among different three atoms inside the molecule are mentioned in the following table. Average bond angle is approx. 110.55 whereas maximum bond angle is about (C25-N43-C45) 128.3106. Those bond angles in which nitrogen atom is involved are have higher values then other bond angles such as - C25-N43-H44, C25-N43-C45, H44-N43-C45, N43-C45-O46 and N43-C45-C47.

PARAMETER	BOND	PARAMETER	BOND	PARAMETER	BOND
	ANGLE		ANGLE		ANGLE
C2-C1-C5	111.6964	O34-C26-O35	108.2675	C51-C55-C54	109.3454
C2-C1-H7	108.7533	C28-C27-H31	107.2269	C51-C5-H59	108.6105
C2-C1-O15	109.0230	C28-C27-O34	110.2139	C51-C55-O65	107.6900
C5-C1-H7	110.5961	C28-C27-C38	115.5175	C54-C55-H59	108.6267
C5-C1-O15	110.5827	H31-C27-O34	108.7513	C54-C55-O65	111.8742
H7-C1-O15	106.0058	H31-C27-C38	107.6256	H59-C55-O65	110.6344
C1-C2-C3	110.3197	O34-C27-C38	107.3245	C53-O61-C54	120.4323
C1-C2-H6	109.3996	C24-C28-C27	109.9726	C53-O62-C73	116.6143
C1-C2-O13	109.2539	C24-C28-H32	107.8457	C52-O63-H64	106.9226
C3-C2-H6	108.2611	C24-C28-O36	105.5550	C55-O65-H66	108.9892

C3-C2-O13	108.5587	C27-C28-H32	108.6926	C54-C67-H68	109.9531
H6-C2-O13	111.0378	C27-C28-O36	113.1666	C54-C67-H69	109.3891
C2-C3-H10	112.1354	H32-C28-O36	111.4512	C54-C67-O70	112.2216
C2-C3-O11	107.1749	C26-O34-C27	111.8059	H68-C67-H69	108.6016
C2-C3-O12	111.3647	C26-O35-C51	117.1174	H68-C67-O70	106.0241
H10-C3-O11	108.7610	C28-O36-H37	108.4648	H69-C67-O70	110.5492
H10-C3-O12	110.9014	C27-C38-H39	108.6661	C67-O70-H71	111.0056
011-C3-012	106.2220	C27-C38-H40	109.0013	C73-C72-C76	110.9263
C5-C4-H8	108.7556	C27-C38-O41	109.5801	C73-C72-H78	109.4412
C5-C4-O11	111.5551	H39-C38-H40	109.2697	C73-C72-O85	110.7091
C5-C4-C19	113.5273	H39-C38-O41	110.3822	C76-C72-H78	109.0824
H8-C4-O11	109.3147	H40-C38-O41	109.9121	C76-C72-O85	107.9465
H8-C4-C19	110.2904	C38-O41-H42	111.8114	H78-C72-O85	108.6825
O11-C4-C19C1-	103.2683	C25-N43-H44	112.6278	062-C73-C72O62-	109.0024
C5-C4	110.9127	C25-N43-C45	128.3106	C73-C74	107.7766
C1-C5-H9	109.5936	H44-N43-C45	118.6818	O62-C73-H77	111.3044
C1-C5-O17	105.3756	N43-C45-O46	124.4336	C72-C73-C74	111.0317
C4-C5-H9	108.4882	N43-C45-C47	114.8191	C72-C73-H77	108.9930
C4-C5-O17	113.7850	O46-C45-C47	120.7286	C74-C73-H77	108.7393
H9-C5-O17	108.5979	C45-C47-H48	113.1747	C73-C74-H81	110.7732
C3-O11-C4	114.0282	C45-C47-H49	109.1903	C73-C74-O82	109.6810
C3-O12-C24	118.2007	C45-C47-H50	108.8399	C73-C74-O83	108.4029
C2-O13-H14	107.1944	H48-C47-H49	108.3130	H81-C74-O82	109.7889
C1-O15-H16	106.1031	H48-C47-H50	109.3025	H81-C74-O83	110.7385
C5-O17-H18	110.2742	H49-C47-H50	107.8884	082-C74-083	107.3818
C4-C19-H20	110.1730	O35-C51-C52	112.4150	C76-C75-H79	108.8007
C4-C19-H21	111.9612	O35-C51-C55	107.0289	C76-C75-O82	109.6430
C4-C19-O22	108.9663	O35-C51-H57	108.4973	C76-C75-C89	113.1238
H20-C19-H21	109.4087	C52-C51-C55	107.1136	H79-C75-O82	109.1450

DIHEDRAL ANGLES

A dihedral angle is defined as the angle between two planes both of which pass through the same bond. There is much weaker preference for particular values of the dihedral angle around single bonds. Usually, the value of 0° (eclipsed) is avoided, and values of around 60° (staggered) to 90° are somewhat preferred, depending on the number of lone pairs on the termini. 179.9017 is the maximum dihedral angle among H19-C4-O11-C3 atoms in the oligosaccharide. The values of some important dihedral angles in the isolated tetrasaccharide Taliose are arranged in the following table:

Parameter	D. Angle	Parameter	D. Angle	Parameter	D. Angle
C5-C1-C2-C3	-56.17240	012-C24-C25-N43	58.04980	H19-C4-O11-C3	179.9017
C5-C1-C2-H6	62.81750	C28-C24-C25-C26	-178.9162	C5-C4-H19-H20	-171.5068
C5-C1-C2-O13	-175.4373	C28-C24-C25-H29	-177.8290	C5-C4-H19-H21	-49.51030

66.16560	C28-C24-C25-N43	-62.87750	C5-C4-H19-O22	67.72110
-174.8446	H30-C24-C25-C26	60.15650	H8-C4-H19-H20	-49.17270
-53.09930	H30-C24-C25-H29	-63.99370	H8-C4-H19-H21	72.82380
62.60730	H30-C24-C25-N43	54.38120	C67-C54-C55-H59	70.42730
64.76790	012-C24-C28-C27	173.6177	C67-C54-C55-O65	-51.98810
-173.1095	O12-C24-C28-H32	55.21500	C55-C54-O61-C53	38.77040
-56.18390	012-C24-C28-O36	173.5899	H58-C54-O61-C53	-80.97450
156.8181	C72-C73-C74-O83	172.8517	C67-C54-O61-C53	162.9191
-30.44050	H77-C73-C74-H81	174.6329	C55-C54-C67-H68	-59.67820
34.22670	N43-C45-C47-H48	22.30730	C55-C54-C67-H69	-178.8566
-153.0319	N43-C45-C47-H49	-98.41580	C76-C72-O85-H86	-165.0386
-82.43350	N43-C45-C47-H50	144.0420	C76-C72-C73-O62	-172.7464
90.30790	O46-C45-C47-H48	-159.1980	C76-C72-C73-C74	-54.16800
-62.24490	O46-C45-C47-H49	80.07900	С76-С72-С73-Н77	65.59090
61.35100	O46-C45-C47-H50	-37.46320	H78-C72-C73-O62	-52.33880
2.349100	O35-C51-C52-C53	-179.7195	H78-C72-C73-C74	66.23960
-179.2198	O35-C51-C52-H56	-59.50030	H78-C72-C73-H77	-174.0015
174.7100	O35-C51-C52-O63	60.89810	085-C72-C73-O62	67.43620
-6.858900	C55-C51-C52-C53	-62.43140	085-C72-C73-C74	-173.9854
22.30730	C55-C51-C52-H56	57.78780	O85-C72-C73-H77	-54.22650
	-174.8446 -53.09930 62.60730 64.76790 -173.1095 -56.18390 156.8181 -30.44050 34.22670 34.22670 -153.0319 -82.43350 90.30790 -62.24490 61.35100 2.349100 -179.2198 174.7100 -6.858900	-174.8446H30-C24-C25-C26-53.09930H30-C24-C25-H2962.60730H30-C24-C25-N4364.76790O12-C24-C28-C27-173.1095O12-C24-C28-H32-56.18390O12-C24-C28-H32-56.18390O12-C24-C28-H32-30.44050H77-C73-C74-D8334.22670N43-C45-C47-H48-153.0319N43-C45-C47-H48-153.0319N43-C45-C47-H48-62.24490O46-C45-C47-H48-62.24490O46-C45-C47-H48-135100O46-C45-C47-H4961.35100O46-C45-C47-H502.349100O35-C51-C52-C53-179.2198O35-C51-C52-O63-6.858900C55-C51-C52-C53	-174.8446H30-C24-C25-C2660.15650-53.09930H30-C24-C25-H29-63.9937062.60730H30-C24-C25-N4354.3812064.76790O12-C24-C28-C27173.6177-173.1095O12-C24-C28-H3255.21500-56.18390O12-C24-C28-O36173.5899156.8181C72-C73-C74-O83172.8517-30.44050H77-C73-C74-H81174.632934.22670N43-C45-C47-H4822.30730-153.0319N43-C45-C47-H49-98.41580-82.43350N43-C45-C47-H48-159.1980-62.24490O46-C45-C47-H4980.0790061.35100O46-C45-C47-H4980.0790061.35100O35-C51-C52-C53-179.7195-179.2198O35-C51-C52-O6360.89810-6.858900C55-C51-C52-C53-62.43140	-174.8446H30-C24-C25-C2660.15650H8-C4-H19-H20-53.09930H30-C24-C25-H29-63.99370H8-C4-H19-H2162.60730H30-C24-C25-N4354.38120C67-C54-C55-H5964.76790O12-C24-C28-C27173.6177C67-C54-C55-O65-173.1095O12-C24-C28-H3255.21500C55-C54-O61-C53-56.18390O12-C24-C28-O36173.5899H58-C54-O61-C53156.8181C72-C73-C74-O83172.8517C67-C54-C67-H6834.22670N43-C45-C47-H4822.30730C55-C54-C67-H69-153.0319N43-C45-C47-H4822.30730C76-C72-C73-C7490.30790O46-C45-C47-H48-159.1980C76-C72-C73-C7461.35100O46-C45-C47-H4980.07900C76-C72-C73-C7461.35100O46-C45-C47-H49-37.46320H78-C72-C73-C74-179.2198O35-C51-C52-C53-179.7195H78-C72-C73-H77174.7100O35-C51-C52-C6360.89810O85-C72-C73-O62-6.858900C55-C51-C52-C53-62.43140O85-C72-C73-C74

DIPOLE MOMENT

Dipole moment is arises in any system in which there is a seoaration of cahrge. In compound Taliose carbon, nitogen, oxygen and hydrogen atoms are present and among them carbon and hydrogens are positively charged whereas oxygen and nitrogen are negatively charged. Due to this charge sepration, dipole moment is generated in the molecule. Dipole moment (field-independent basis, Debye) for the isolatedtetrasaccharide Taliose was also calculated or obtained by DFT calculations and mentioned below-

X= 6.2815 Y= -0.5244 Z= -3.8363 Tot=7.3790

CONCLUSION OF DFT STUDIES

After complete study, an oligosaccharide 'Taliose' from gaddi sheep's (*Ovis aries orientalis*) milk was isolated and its structure was elucidated with the help of 1-D and 2-D NMR spectroscopic techniques. Further DFT calculations were performed using Gauss09W software and B3LYP/6-31+G (d.p.) basis set which indicates that compound was found to be stable and different electrophilic and nucleophilic centres were present in the compound which indicates the reactive regions of the compound. The data of bond lengths, bond angle, dihedral angles and mulliken charges of the compound were also studied.

CONCLUSION

A Novel Tetrasaccharide Taliose was isolated and its stereoscopic structure was elucidated with the help of 2D NMR and Mass spectrometry. It was found that Taliose contained β -Gal

 $(1\rightarrow 2)$ Glc instead of β -Gal $(1\rightarrow 4)$ Glc (Lactose) present at the reducing end which is found in most of the milk oligosaccharides. It also showed its rarity by having $1\rightarrow 2$ glycosidic linkages into its structure. It is the first repot of this rare oligosaccharide from any natural or synthetic source.

ACKNOWLEDGEMENTS

Authors are thankful to University Grant Commission, New Delhi [UGC- Ref. NO.:254/(CSIR-UGC NET DEC.2017] for Financial assistance, Director CBMR SGPGI Lucknow for running the NMR Spectrum and Head Department of Chemistry, University of Lucknow for providing Laboratory and Library facilities.

REFERENCES

- Agnihotri, M., Rathor, S. and Deepak, D. (2019). Isolation and Structure Elucidation of Novel Pentasaccharide "Primose" from Cow Colostrum. J. Biol. Chem. Research Volume 36 (1) C, 234-241.
- Coni, E.A., Bocca, P., Coppolelli, S., Caroli, C., Cavallucci and Trabalza, M. (1996). Minor and trace element contents in sheep and goat milk and dairy products. *Food Chemistry*, 57(2), 253-260.
- Dubois, M., Gills, K.A., Hamilton, J.K., Rebers, P.A. and Smith F. (1956). Method for determination of sugars and related substances. *Anal chem*. 28:350-356.
- Fang, J. N., H. Proksch and H. Wagner (1985). Immunologically active polysaccharides of acanthopanax sen cosus. *Phytochemistry* 24: 2619-22.
- Farag, M.A., Jomaa, S.A., Abd El-Wahed, A. and R El-Seedi, H. (2020). The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavor Chemistry, Nutritional Value, Health Benefits, and Safety. *Nutrients*, 12, 346.
- Feigl F. (1975). Spot Tests in Organic Analysis. Elsevier. 7:337.
- Khan, M., Sharma, S., Narain, D., Mishra, A., Khare, A. and Deepak, D. (2017). J. Biol. Chem. Research, 34(1), 188-195.
- Killiani, H. (1930). Uber digitalinum verum. ber. Deutsch Chem. Ges. 63:2866.
- Jamal, L., Shukla, M., Mishra A. and Deepak D. (2023). 3D Structure Assignment of a Novel Hexasaccharide 'Aliose' from Gaddi Sheep Milk, by 2D-NMR, Mass Spectrometry and their DFT Studies. 40(1).
- Mahendru, G., Sharma, P.K., Garg, V.K., Singh, A.S. and Mondal, S.C. (2011). Role of Goat Milk and Milk Products in Dengue Fever. *Journal of Pharmaceutical and Biomedical Sciences.* 8 (06).
- Singh, M., Kumar, A., Srivastava, G., Deepak, D. and Singh, M.P.V.V. (2016). Isolation, structure elucidation and DFT study on two noveloligosaccharides from yak milk. *Journal of Molecular Structure*, 1117, 69-78.
- **Partridge, SM. (1949).** Aniline hydrogen phthalate as a spraying reagent for chromatography of sugars. Nature. 164:443.
- Ranjan, A. K., M. Agnihotri and Deepak, D. (2015). Novel heptasaccharide isolated from sheep milk. *JBCR*, 32(2): 872-877.
- Ranjan, A.K., Agnihotri, M. and Deepak, D. (2015). Novel Heptasaccharide isolated from Sheep Milk. J. Biol. Chem. Research 873 Vol. 32 (2): 872-877.

- **Ranjan, A.K., Sinha, H. and Deepak, D. (2017).** Obtention of Novel Fucosylated Oligosaccharides from Sheep Milk. *International Journal of Carbohydrate Research* 7(1): 1-3.
- Rodríguez-Alcalá, L.M., Castro-Gómez, M.P., Pimentel, L.L. and Fontecha, J (2017). Milk fat components with potential anticancer activity—A review. *Biosci Rep.*, *37*(6), 0705.
- Sahu, S., Verma, P., Sarkar, J. and Deepak, D. (2017). Isolation of a novel Sheep milk oligosaccharide as biologically active component. *JBCR*, Vol 34(2), 583-596.
- Saksena, R., Deepak, D., Khare, A., Sahai, R., Tripathi, L.M. and Srivastava, V.M.L. (1999). A novel pentasaccharide from immunostimulant oligosaccharide fraction of buffalo milk. *Biochemica et. Biophysica Acta.*, *1428*(2-3), 433-445.
- Singh, A. K., Agnihotri, M. and Deepak, D. (2016). Structure elucidation of novel milk oligosaccharide (Osiose) from sheep milk. *J. Biol. Chem. Res.*, 33, 344-351.
- Shahani, K.M., Friend, B.A. and Bailey, P.J. (1983). Antitumor Activity of Fermented Colostrum and Milk. *Journal of Food Protection.*, 46(5), 385-386.
- Shahi, S., Sigh, H.K., Shukla, C.S., Deepak, D. and Singh, S.K. (2020). The biological utilization of Gaddi sheep's milk oligosaccharides. *Journal of critical reviews*, 7(15), 2061-2068.
- Shahi, S., Gangwar, G., Verma, P. and Deepak, D. (2017). Isolation, Purification and NMR Study of a Novel Nonasaccharide (Rieose) from 'Gaddi Sheep' Milk. *JBCR*, 2017, Vol 34(2), 569-582.
- Shahi, S., Khan, M. and Deepak, D. (2017). Isolation and structure elucidation of novel nonasaccharide from gaddi' sheep milk. *JBCR*, 2017, Vol 34(2), 557-568.
- **Tiwari, N., Jamal, N. and Mishra, A. (2023).** Virtual Screening of Phytochemicals in Search of a Potential Drug Candidate for COVID-19: DFT Study and Molecular Docking. *Bentham Science*, 18, 127-144.
- Yoon, Y. and Sun, E. (2003). A conformational study of linkage positions in oligosaccharides investigated by 2D NMR spectroscopy and molecular modelling. *Bulletin of Korean Chemical Society*. 24(3), 339-344.

Corresponding author: Dr. Desh Deepak, Department of Chemistry, University of Lucknow, Lucknow, India.

Email: <u>deshdeepakraju@rediffmail.com</u>