

What is Spectroscopy?

- Spectroscopy is the study of the interactions between **light** and **matter**.
- Here **light** refers to any sort of electromagnetic radiation, such as visible light, UV, IR, and radio waves.
- Depending on the **frequency** or **wavelength** of the radiation involved we will have different types of interactions with matter (molecules).

What is Spectroscopy?

- The following chart shows the ranges (wavelengths), for different types of spectroscopies.

- As you know, wavelength and frequency are inversely proportional, so higher frequencies mean shorter wavelength.

NMR Spectroscopy

NMR

NUCLEAR MAGNETIC RESONANCE

NMR Spectroscopy

NUCLEAR MAGNETIC RESONANCE

- Some property of the nucleus is used
 - Should have net free spin
 - Spin Number $I = \text{Integral multiple of } \frac{1}{2}$
 - $\pm \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots$

NMR Spectroscopy

NUCLEAR MAGNETIC RESONANCE

- Two Magnetic fields are generated
 - External magnet
 - Permanent Magnet
 - Electro Magnet
 - Superconducting Magnet
 - Nuclear spin generates dipoles
 - Nucleus behaves as tiny bar magnets

NMR Spectroscopy

NUCLEAR MAGNETIC RESONANCE

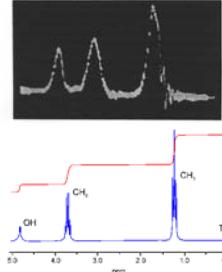
- Matching of Frequency
 - Precisinal Frequency
 - Applied Radiofrequency

Spin Resonance (Magnetic Resonance)

- **Spin resonance** is a physical phenomenon resulting from the intrinsic angular momentum associated with the spin of the nucleus or electron of an atom.
- **These are of two types**
 - Nuclear Magnetic resonance
 - Electron Spin Resonance
- **Nuclear magnetic resonance (NMR)** implies that the nuclei of the atoms are in resonance, while
- **Electron spin resonance (ESR)** deals with electrons.

NMR History

- 1937 Rabi predicts and observes nuclear magnetic resonance
- 1946 Bloch, Purcell first nuclear magnetic resonance of bulk sample
- 1953 Overhauser NOE (nuclear Overhauser effect)
- 1966 Ernst, Anderson Fourier transform NMR
- 1975 Jeener, Ernst 2D NMR
- 1985 Wüthrich first solution structure of a small protein (BPTI) from NOE derived distance restraints
- 1987 3D NMR + ¹³C, ¹⁵N isotope labeling of recombinant proteins (resolution)
- 1990 pulsed field gradients (artifact suppression)
- 1996/7 new long range structural parameters:
 - **residual dipolar couplings** from partial alignment in liquid crystalline media
 - projection angle restraints from **cross-correlated relaxation** TROSY (molecular weight > 100 kDa)

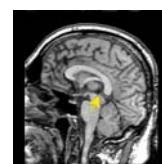

NMR History

Nobel prizes

- 1944 Physics Rabi (Columbia)
- 1952 Physics Bloch (Stanford), Purcell (Harvard)
- 1991 Chemistry Ernst (ETH)
- 2002 Chemistry Wüthrich (ETH)
- 2003 Medicine Lauterbur (University of Illinois in Urbana), Mansfield (University of Nottingham)

NMR History

First Observation of the Chemical Shift 1H NMR spectra ethanol


Modern ethanol spectra

Typical Applications of NMR

- 1.) Structural (chemical) elucidation
 - Natural product chemistry
 - Synthetic organic chemistry
 - analytical tool of choice of synthetic chemists
 - used in conjunction with MS and IR
- 2.) Study of dynamic processes
 - reaction kinetics
 - study of equilibrium (chemical or structural)
- 3.) Structural (three-dimensional) studies
 - Proteins, Protein-ligand complexes
 - DNA, RNA, Protein/DNA complexes
 - Polysaccharides
- 4.) Drug Design
 - Structure Activity Relationships by NMR
- 5.) Medicine -MRI

Typical Applications of NMR

■ MRI images of the Human Brain

NMR Spectra

Each NMR Observable Nuclei Yields a Peak in the Spectra
“fingerprint” of the structure

2-phenyl-1,3-dioxep-

¹H NMR spectra

¹³C NMR spectra

www.anilmishra.name 13

Electro Magnetic Theory Basic Concept

A Direct Application to NMR

A moving perpendicular external magnetic field will induce an electric current in a closed loop

An electric current in a closed loop will create a perpendicular magnetic field

Magnetic field produced by circulating electron

Electromagnet

www.anilmishra.name 14

Electro Magnetic Theory Basic Concept

Faraday's Law of Induction

- If the magnetic flux (Φ_B) through an area bounded by a closed conducting loop changes with time, a current and an emf are produced in the loop. This process is called induction.
- The induced emf is:

$$\xi = -\frac{d\Phi_B}{dt}$$

Simple AC generator

www.anilmishra.name 15

Electro Magnetic Theory Basic Concept

Lenz's Law

- An induced current has a direction such that the magnetic field of the current opposes the change in the magnetic flux that produces the current.
- The induced emf has the same direction as the induced current

Direction of current follows motion of magnet

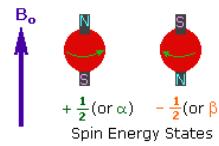
www.anilmishra.name 16

Concept of Spin

- Spin is a fundamental property of all elementary particles and is typically viewed as the intrinsic angular momentum.
- Both electrons and nuclei possess spin, and these spins precess around the direction defined by an applied magnetic field.
- The frequency of precession scales with the applied field and is roughly 1,000 times faster for electrons.

www.anilmishra.name 17

Concept of Spin

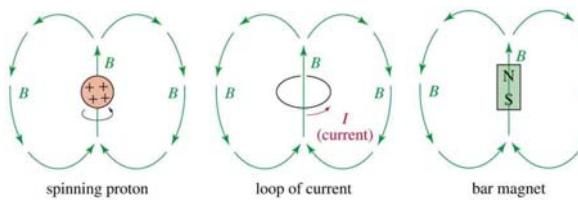

- 1. A spinning charge generates a magnetic field, as shown by the animation on the right. The resulting spin-magnet has a magnetic moment (μ) proportional to the spin.

www.anilmishra.name 18

Concept of Spin

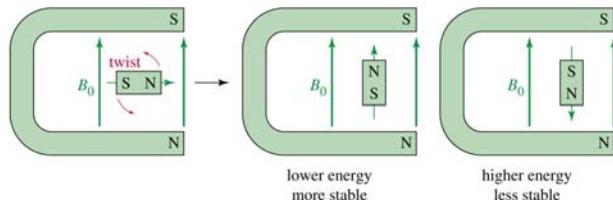
- 2. In the presence of an external magnetic field (B_0), two spin states exist, $+1/2$ and $-1/2$.

The magnetic moment of the lower energy $+1/2$ state is aligned with the external field, but that of the higher energy $-1/2$ spin state is opposed to the external field. Note that the arrow representing the external field points North.


The Gory Details

- Only nuclei with **spin number (I) $\neq 0$** can absorb/emit electromagnetic radiation.
- Even atomic mass & number $\Rightarrow I = 0$ (^{12}C , ^{16}O)
- Even atomic mass & odd number $\Rightarrow I = \text{whole integer}$ (^{14}N , ^{2}H , ^{10}B)
- Odd atomic mass $\Rightarrow I = \text{half integer}$ (^{1}H , ^{13}C , ^{15}N , ^{31}P)
- The **spin states** of the nucleus (m) are **quantized**:

$$m = I, (I - 1), (I - 2), \dots, -I$$
- Properly, m is called the **magnetic quantum number**

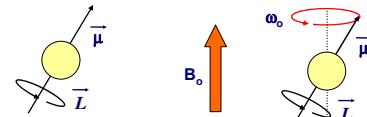

Nuclear Spin

- A nucleus with an odd atomic number or an odd mass number has a nuclear spin.
- The spinning charged nucleus generates a magnetic field.

External Magnetic Field

When placed in an external field, spinning nuclei act like bar magnets.

Precession


- To explain everything in NMR we have to refer to rotation, and Hz are not the best units to do this. We define the **precession** or **Larmor** frequency, ω_0 , in radians:

$$\omega_0 = 2\pi\nu_0 \Rightarrow \omega_0 = \gamma B_0 \text{ (radians)}$$

Precession

- With what precession is ω_0 related to? One thing we left out of the mix was the **angular momentum**, L , associated with all nuclei (magnetic or not).

- We can think of nuclei as small magnetized tops that spin on their axis

- After turning the magnet on we'll have two forces acting on the spins. One that tries to turn them towards B_0 , and the other that wants to maintain their angular momentum. The net result is that the nuclei spins like a top

Theory of Magnetic Resonance

Classical Description

- Spinning particle precesses around an applied magnetic field

A Spinning Gyroscope in a Gravity Field

Applied magnetic field

Precessional orbit

Spinning nucleus

$L = \sqrt{B_0^2 + L^2}$

$L = \text{orbital angular momentum}$

θ

$\Delta\theta$

$L \sin \theta$

$\frac{e}{2m} L$

T

B_0

x

y

$L = \sqrt{B_0^2 + L^2}$

$L = \text{orbital angular momentum}$

θ

$\Delta\theta$

$L \sin \theta$

$\frac{e}{2m} L$

T

B_0

x

y

Theory of NMR

Quantum Description

Nuclear Spin (think electron spin)

- Nucleus rotates about its axis (spin)
- Nuclei with spin have angular momentum (p) or spin

- 1) total magnitude

$\hbar\sqrt{I(I+1)}$

- 2) quantized, spin quantum number I

$2I+1$ states: $I, I-1, I-2, \dots, -I$

$I=1/2: -1/2, 1/2$

- 3) identical energies in absence of external magnetic field

www.anilmishra.name

26

Magnetic Alignment

$\gamma \hbar / 4\pi$

In the absence of external field, each nuclei is energetically degenerate

Add a strong external field (B_0) and the nuclear magnetic moment: aligns with (low energy) against (high-energy)

B_0

www.anilmishra.name

27

Quantum Description

Spins Orientation in a Magnetic Field (Energy Levels)

- Magnetic moments are no longer equivalent
- Magnetic moments are oriented in $2I+1$ directions in magnetic field

- Vector length is: $\hbar\sqrt{I(I+1)}$
- Angle (φ) given by: $\cos \varphi = \frac{m}{\sqrt{I(I+1)}}$
- Energy given by: $E = -\frac{m\mu}{I} B_0$

where,

B_0 – magnetic Field

μ – magnetic moment

\hbar – Planck's constant

B_0

$m = +1/2$

$m = -1/2$

$\hbar\sqrt{I(I+1)}$

$\cos \varphi = \frac{m}{\sqrt{I(I+1)}}$

$E = -\frac{m\mu}{I} B_0$

For $I = 1/2$

www.anilmishra.name

28

Quantum Description

Net Magnetization

Spins Orientation in a Magnetic Field (Energy Levels)

- Magnetic moments are oriented in one of two directions in magnetic field (for $I=1/2$)

$m=0 \rightarrow m=+1/2$

$\Delta E = \hbar\omega$

$m=0 \rightarrow m=-1/2$

$B_0 > 0$

$B_0 < 0$

- Difference in energy between the two states is given by:

$\Delta E = \gamma \hbar B_0 / 2\pi$

where:

B_0 – external magnetic field

\hbar – Planck's constant

γ – gyromagnetic ratio

www.anilmishra.name

29

Quantum Description

Net Magnetization

Spins Orientation in a Magnetic Field (Energy Levels)

- Transition from the low energy to high energy spin state occurs through an absorption of a photon of radio-frequency (RF) energy

RF

Energy

Magnetic Field

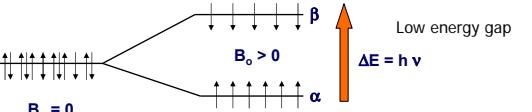
Abs. E.

Magnetic Field

$\nu = \gamma B_0 / 2\pi$

www.anilmishra.name

30


NMR Spectroscopy

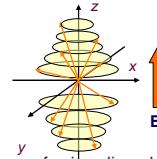
Quantum Description

Net Magnetization

NMR Signal (sensitivity)

- The applied magnetic field causes an energy difference between the aligned (α) and unaligned (β) nuclei
- NMR signal results from the transition of spins from the α to β state
- Strength of the signal depends on the population difference between the α and β spin states

$N_\alpha / N_\beta = e^{\Delta E / kT}$


www.anilmishra.name

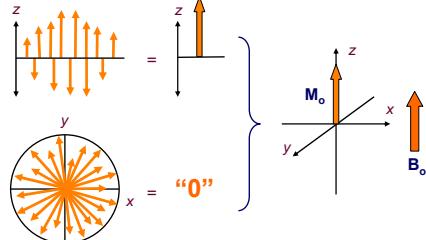
31

Classical Description

Net Magnetization

- Where does the net magnetization comes from? In order to figure it out we translate all the spins to the origin of the coordinate system. We'll see something like this:

- We'll have a slight excess of spins aligned with B_0 , but at any angle with respect to z . The distribution is proportional to N_α / N_β .


www.anilmishra.name

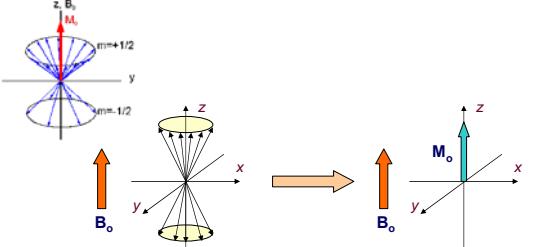
32

Classical Description

Net Magnetization

- If we decompose the \mathbf{m} vectors in z and $\langle xy \rangle$, we get

The net magnetization is aligned with B_0 , and this is what we use in NMR.


www.anilmishra.name

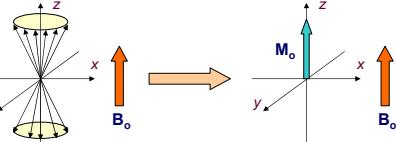
33

Classical Description

Net Magnetization

- Nuclei either align with or against external magnetic field along the z -axis.
- Since more nuclei align with field, net magnetization (M_0 , M_z) exists parallel to external magnetic field.
- Net Magnetization along $+Z$, since higher population aligned with B_0 .
- Magnetization in X, Y plane (M_x, M_y) averages to zero.

www.anilmishra.name

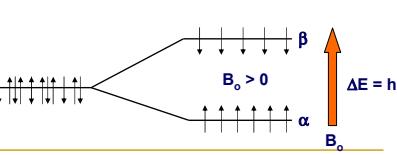

34

Net Magnetization

Classic View:

- Nuclei either align with or against external magnetic field along the z -axis.

Since more nuclei align with field, net magnetization (M_0) exists parallel to external magnetic field



Quantum Description:

Nuclei either populate low energy (α , aligned with field) or high energy (β , aligned against field)

Net population in α energy level.

Absorption of radio-frequency promotes nuclear spins from $\alpha \rightarrow \beta$.

www.anilmishra.name

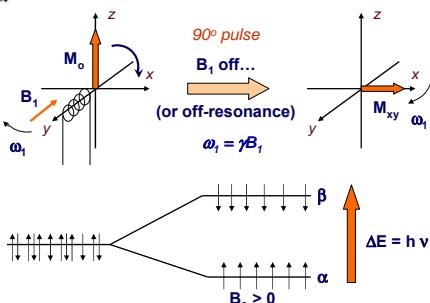
35

Resonance

Absorption of RF Energy or NMR RF Pulse

Classic View:

- Apply a radio-frequency (RF) pulse a long the y -axis


B_1 pulse viewed as a second field (B_1), that the net magnetization (M_0) will precess about with an angular velocity of ω_1

precession stops when B_1 turned off

Quantum Description:

- enough RF energy has been absorbed, such that the population in α/β are now equal
- No net magnetization along the z -axis

Please Note: A whole variety of pulse widths are possible, not quantized dealing with bulk magnetization

www.anilmishra.name

36