

The NMR Spectrometer

sample tube
magnet
magnet controller
detector
RF transmitter
recorder
absorption
magnetic field

www.anilmishra.name

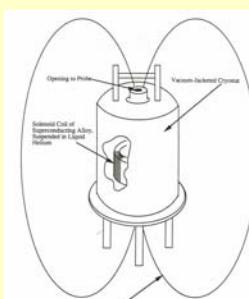
The NMR Spectrometer

www.anilmishra.name

The NMR Spectrometer

Sample Tube

www.anilmishra.name


Modern Superconducting NMR Magnets

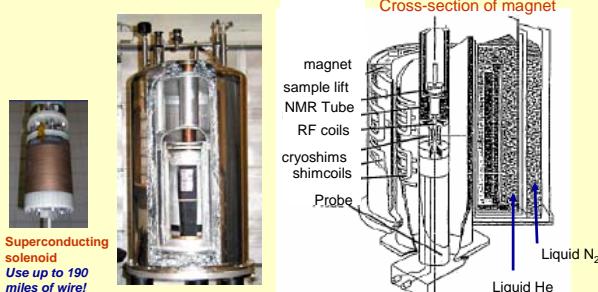
www.anilmishra.name

Modern Superconducting NMR Magnets

- Older Magnets (1970s) had opposed pole faces. High voltages and currents demanded heroic temperature control. Field ran side to side through sample.
- Supercon magnets have much larger fields, better homogeneity. Field runs up the axis of the sample.
- New technology! Built in auxiliary magnet with reversed current acts as "active" shield, partly eliminating the projection into the room.

Opening to Probe
Solenoid Coil of Superconducting Alum. Helium
Vacuum-Techmed Crystal

Note: Special superconducting alloys Niobium-Titanium. Search goes on for higher temperature superconductors.


Lines of force project several feet into the room. They concentrate at the top and bottom. Magnets can grab iron objects and accelerate them.

www.anilmishra.name

Modern Superconducting NMR Magnets

- a) solenoid wound from superconducting niobium/tin or niobium/titanium wire
- b) kept at liquid helium temperature (4K), outer liquid N₂ dewar
 - near zero resistance \rightarrow minimal current loss \rightarrow magnet stays at field for years without external power source

Cross-section of magnet

Superconducting solenoid
Use up to 190 miles of wire!

magnet
sample lift
NMR Tube
RF coils
cryoshims
shimcoils
Probe
Liquid N₂
Liquid He

www.anilmishra.name

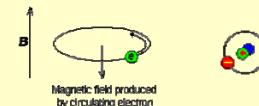
MRI Magnet

www.anilmishra.name

The Interactions of NMR

- Zeeman interaction (basic NMR phenomenon)
- Shifts (interactions that change NMR frequency)
 - Chemical shift
 - others (e.g. Knight shift, **paramagnetic shifts**)
- Couplings (interactions that split NMR signals)
 - **J coupling**
 - Dipolar coupling
 - Quadrupole coupling

www.anilmishra.name


Peak Position in an NMR Spectrum

- Nuclei in different chemical environments in a molecule will resonate at slightly different frequencies
- The position of the signals in the spectrum is called the "chemical shift"
- There are two reasons for differences in the magnetic environment for a proton
 - The magnetic field generated by electrons circulating around the nucleus giving the signal
 - Local magnetic fields generated by electrons elsewhere in the molecule

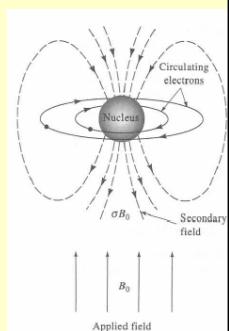
www.anilmishra.name

Magnetic Shielding

- If all protons absorbed the same amount of energy in a given magnetic field, not much information could be obtained.
- But protons are surrounded by electrons that shield them from the external field.
- Circulating electrons create an induced magnetic field that opposes the external magnetic field.

www.anilmishra.name

Magnetic Shielding


- Small local magnetic fields (B_{loc}) are generated by electrons as they circulate nuclei.
 - Current in a circular coil generates a magnetic field
- These local magnetic fields can either oppose or augment the external magnetic field
 - Typically oppose external magnetic field
 - Nuclei "see" an effective magnetic field (B_{eff}) **smaller** than the external field
 - σ – magnetic shielding or screening constant
 - Depends on electron density
 - Depends on the structure of the compound

$$B_{eff} = B_0 - B_{loc} \quad \dots \quad B_{eff} = B_0(1 - \sigma)$$

www.anilmishra.name

Magnetic Shielding

- Under the influence of the magnetic field, electrons bonding the proton tend to precess around the nucleus in a plane perpendicular to the magnetic field. This develops a secondary field that opposes the primary field.
- So nucleus experiences resultant field that is smaller (i.e., shielded from full effect of primary field). As a consequence, external field must be increased to cause nuclear resonance.
- The frequency of the precession and the magnitude of the secondary field is a direct function of the external field.

www.anilmishra.name

Shielding and Deshielding of Protons

- Protons in an external magnetic field absorb at different frequencies depending on the electron density around that proton
- High electron density around a nucleus **shields** the nucleus from the external magnetic field
 - Shielding causes absorption of energy at higher frequencies (more energy is required for this nucleus to flip between spin states) - the signals are upfield in the NMR spectrum
- Lower electron density around a nucleus **deshields** the nucleus from the external magnetic field
 - Deshielding causes absorption of energy at lower frequencies (less energy is required for this nucleus to flip between spin states) - the signals are downfield in the NMR spectrum

www.anilmishra.name

Equivalent and Nonequivalent Protons

- To predict the number of signals to expect in an NMR spectrum it is necessary to determine how many sets of protons are in unique environments
- Chemically equivalent protons** are in the same environment and will produce only one signal
- Homotopic Hydrogens**
 - Hydrogens are chemically equivalent or homotopic if replacing each one in turn by the same group would lead to an identical compound

www.anilmishra.name

Chemical Shift and Resonance Frequency

- Chemical shift** is defined as the difference in the resonance position of a signal with respect to a reference signal.
 - Ratio of shift downfield from TMS (Hz) to total spectrometer frequency (Hz).
 - Measured in parts per million.
 - It is independent of applied magnetic field strength. Same value for 60, 100, or 300 MHz machine.
 - Called the delta scale.
- The **Resonance Frequency** is defined as the frequency difference between the reference signal and a proton signal.

www.anilmishra.name

Tetramethylsilane

- TMS is added to the sample.
- Since silicon is less electronegative than carbon, TMS protons are highly shielded. Signal defined as zero.
- Organic protons absorb downfield (to the left) of the TMS signal.

www.anilmishra.name

Chemical Shift

Delta Scale

chemical shift, ppm δ = $\frac{\text{shift downfield from TMS (in Hz)}}{\text{spectrometer frequency (in MHz)}}$

600 Hz	480 Hz	360 Hz	240 Hz	120 Hz	0 Hz					
10	9	8	7	6	5	4	3	2	1	0
ppm δ										
60 MHz										

3000 Hz	2400 Hz	1800 Hz	1200 Hz	600 Hz	0 Hz					
10	9	8	7	6	5	4	3	2	1	0
ppm δ										
300 MHz										

www.anilmishra.name

Chemical Shift

- The δ scale for chemical shifts is independent of the magnetic field strength of the instrument (whereas the absolute frequency depends on field strength)

$$\delta = \frac{(\text{observed shift from TMS in hertz}) \times 10^6}{(\text{operating frequency of the instrument in hertz})}$$
- Thus, the chemical shift in δ units for protons on benzene is the same whether a 60 MHz or 300 MHz instrument is used

$$\delta = \frac{2161 \text{ Hz} \times 10^6}{300 \times 10^6 \text{ Hz}} = 7.27$$

$$\delta = \frac{436 \text{ Hz} \times 10^6}{60 \times 10^6 \text{ Hz}} = 7.27$$

www.anilmishra.name