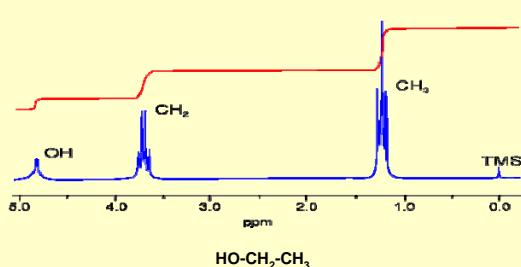
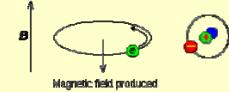


The Interactions of NMR

- Zeeman interaction (basic NMR phenomenon)
- Shifts (interactions that change NMR frequency)
 - Chemical shift
 - others (e.g. Knight shift, paramagnetic shifts)
- Couplings (interactions that split NMR signals)
 - *J* coupling
 - Dipolar coupling
 - Quadrupole coupling



NMR Signals


- Lower frequency is to the left in the spectrum;
 - these absorptions are said to be downfield
- Higher frequency is to the right in the spectrum:
 - these absorptions are said to be upfield
- The small signal at δ 0 corresponds to an internal standard called tetramethylsilane (TMS) used to calibrate the chemical shift scale
- The number of signals in the spectrum corresponds to the number of unique sets of protons

Chemical Shift

Chemical Shift

- **Chemical shift** is defined as the difference in the resonance position of a signal with respect to a reference signal.
- The **Resonance Frequency** is defined as the frequency difference between the reference signal and a proton signal.
- The δ scale for chemical shifts is independent of the magnetic field strength of the instrument (whereas the resonance frequency depends on field strength)

$$\delta = \frac{(\text{observed shift from TMS in hertz}) \times 10^6}{(\text{operating frequency of the instrument in hertz})}$$

Chemical Shift

- Thus, the chemical shift in δ units for protons on benzene is the same whether a 60 MHz or 300 MHz instrument is used

$$\delta = \frac{2181 \text{ Hz} \times 10^6}{300 \times 10^6 \text{ Hz}} = 7.27$$

$$\delta = \frac{436 \text{ Hz} \times 10^6}{60 \times 10^6 \text{ Hz}} = 7.27$$

Chemical Shift

Delta Scale

$$\text{chemical shift, ppm } \delta = \frac{\text{shift downfield from TMS (in Hz)}}{\text{spectrometer frequency (in MHz)}}$$

High Resolution

(I) HOCH2CH2CH2CH2CH2CH3

www.anilmishra.name 7

High Resolution

(II) HOCH2CH2CH2CH2CH2CH3

www.anilmishra.name 8

High Resolution

60 MHz $\xrightarrow{B_0}$
Hz: 660 600 540 480 420 360 300 240 180 120 60 0 0 δ (ppm)

100 MHz $\xrightarrow{B_0}$
Hz: 1100 1000 900 800 700 600 500 400 300 200 100 0 0 δ (ppm)

www.anilmishra.name 9

High Resolution

10 9 8 7 6 5 3 2 1

1 9 8 7 6 5 4 3 2 1

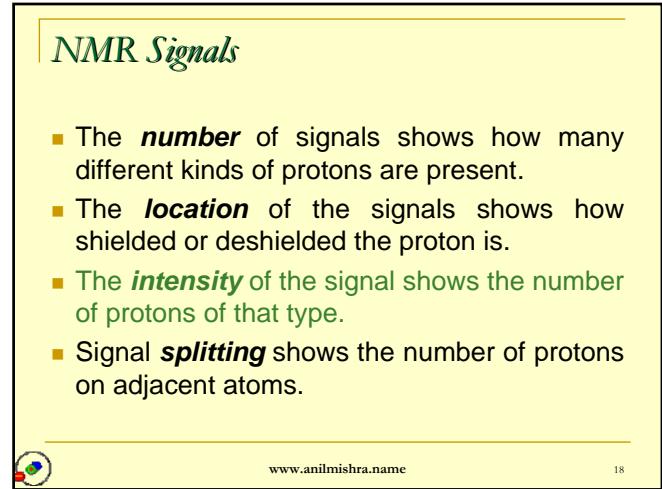
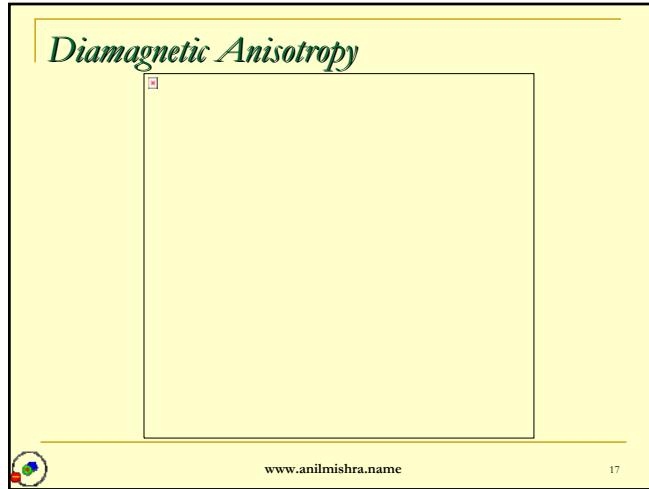
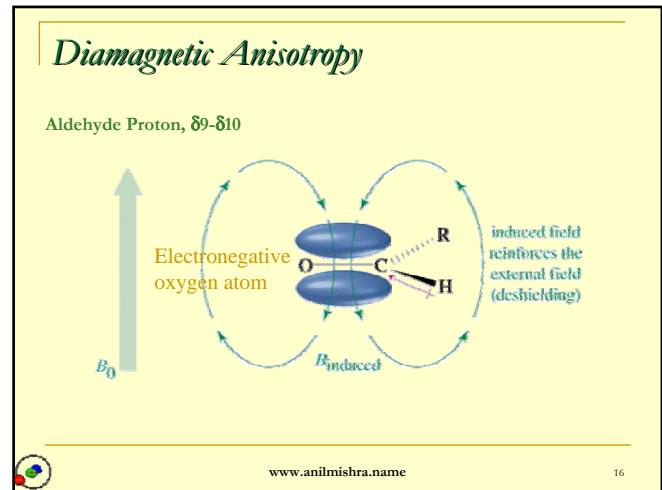
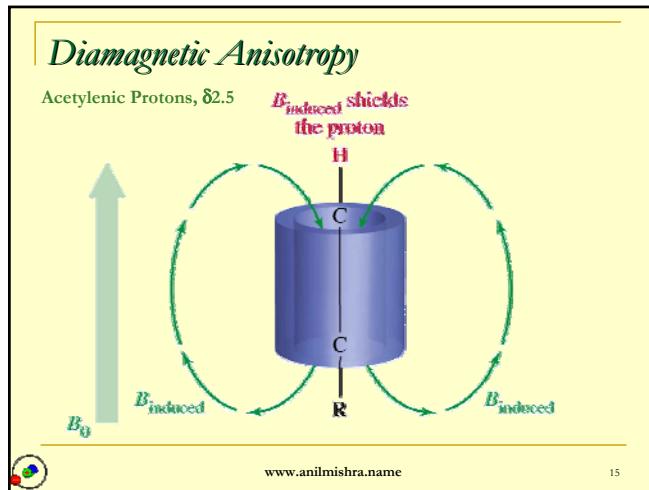
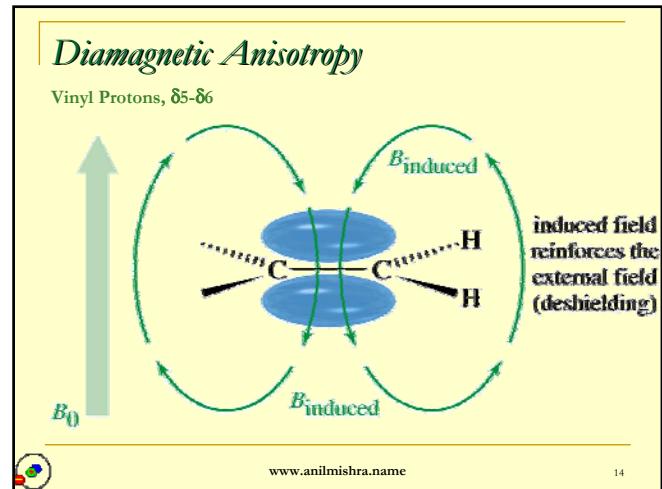
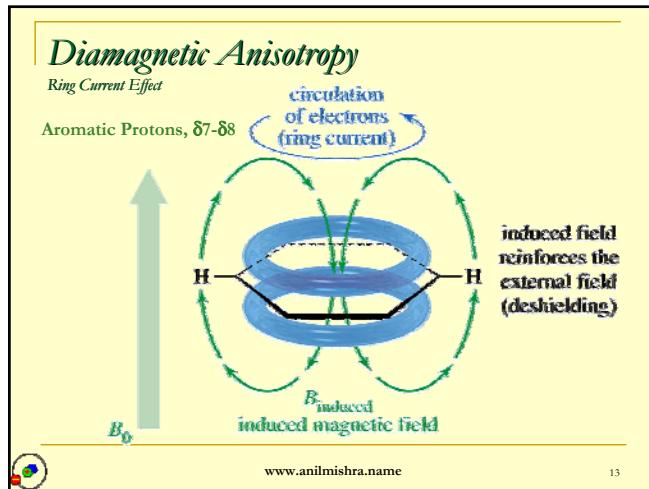
www.anilmishra.name 10

Chemical Shift Trends

12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 ppm (δ)

www.anilmishra.name 11

Diamagnetic Anisotropy

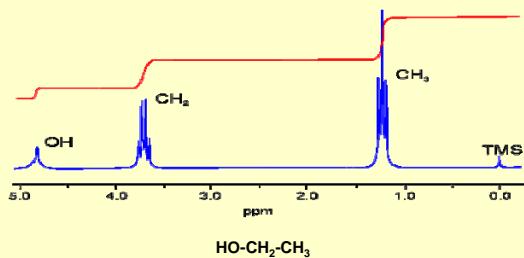






Ring Current Effect

1) external field induces a flow (current) of electrons in π system – ring current effect
2) ring current induces a local magnetic field with shielding (decreased chemical shift) and deshielding (increased chemical shifts)

Benzene:
 ^1H : 7.16 ppm
 ^{13}C : 128.39 ppm

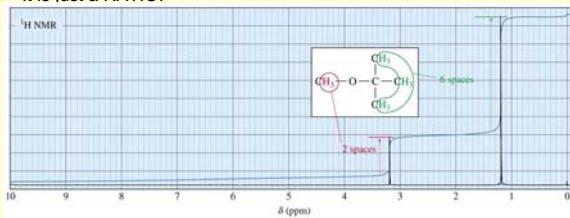
Cyclohexane:
 ^1H : 1.38 ppm
 ^{13}C : 26.43 ppm

www.anilmishra.name 12



Integration Line

- The area under each signal is proportional to the number of protons that give rise to that signal
- The height of each integration step is proportional to the area under a specific signal
- The integration tells us the relative number of protons that give rise to each signal, not absolute number


Integration Line

Integration Line

Intensity of Signals

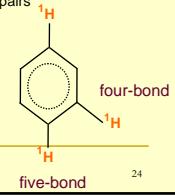
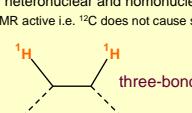
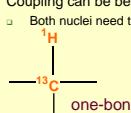
- The area under each peak is proportional to the number of protons. (The Integral Trace)
- It is just a RATIO.

NMR Signals

- The **number** of signals shows how many different kinds of protons are present.
- The **location** of the signals shows how shielded or deshielded the proton is.
- The **intensity** of the signal shows the number of protons of that type.
- Signal **splitting** shows the number of protons on adjacent atoms.

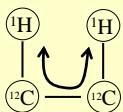
Nuclear Spin Interactions

Scalar J Coupling




- The energy levels of a nucleus will be affected by the spin state of nuclei nearby. The two nuclei that show this are said to be **coupled** to each other.
- This manifests in particular in cases where we have through bond connectivity
- The magnitude of the separation is called **coupling constant (J)** and has units of Hz.

Nuclear Spin Interactions

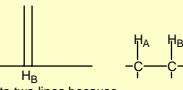
Scalar J Coupling


- Through-bond interaction that results in the splitting of a single peak into multiple peaks of various intensities
 - The spacing in hertz (Hz) between the peaks is a constant independent of magnetic field strength
- Multiple coupling interactions may exist
 - Increase complexity of splitting pattern
- Coupling can range from one-bond to four-bond
 - One, two and three bond coupling are most common
 - Longer range coupling usually occurs through aromatic systems
- Coupling can be between heteronuclear and homonuclear spin pairs
 - Both nuclei need to be NMR active i.e. ¹³C does not cause splitting

Nuclear Spin Interactions

Scalar J Coupling

- Electrons have a magnetic moment and are spin 1/2 particles.
- J coupling is facilitated by the electrons in the bonds separating the two nuclei.
 - This through-bond interaction results in splitting of the nuclei into 2 \times 1 states.
- Thus, for a spin 1/2 nucleus the NMR lines are split into $2(1/2) + 1 = 2$ states
 - Multiplet = $2nI + 1$
 - n - number of identical adjacent nuclei
 - I - spin quantum number



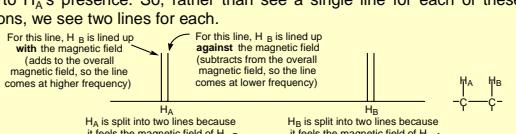
www.anilmishra.name 25

Nuclear Spin Interactions

Scalar J Coupling

- Splitting of signal is due to $1H - 1H$ coupling (also called spin-spin coupling or J-coupling). Here's how it works:
- Imagine we have a molecule which contains a proton (let's call it H_A) attached to a carbon, and that this carbon is attached to another carbon which also contains a proton (let's call it H_B).

For this line, H_B is lined up with the magnetic field (adds to the overall magnetic field, so the line comes at higher frequency)
 H_A is split into two lines because it feels the magnetic field of H_B .

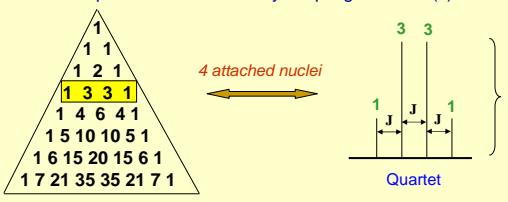

For this line, H_B is lined up against the magnetic field (subtracts from the overall magnetic field, so the line comes at lower frequency)
 H_B is split into two lines because it feels the magnetic field of H_A .

www.anilmishra.name 26

Nuclear Spin Interactions

Scalar J Coupling

- It turns out that H_A feels the presence of H_B .
 - Recall that these protons are tiny little magnets, that can be oriented either with or against the magnetic field of the NMR machine.
- When the field created by H_B reinforces the magnetic field of the NMR machine (B_0) H_A feels a slightly stronger field, but when the field created by H_B opposes B_0 , H_A feels a slightly weaker field.
- So, we see two signals for H_A depending on the alignment of H_B .
- The same is true for H_B , it can feel either a slightly stronger or weaker field due to H_A 's presence. So, rather than see a single line for each of these protons, we see two lines for each.

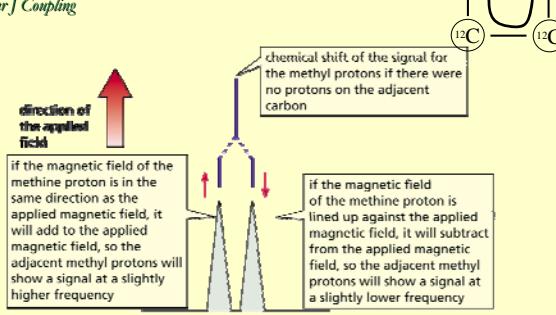


www.anilmishra.name 27

Nuclear Spin Interactions

Scalar J Coupling

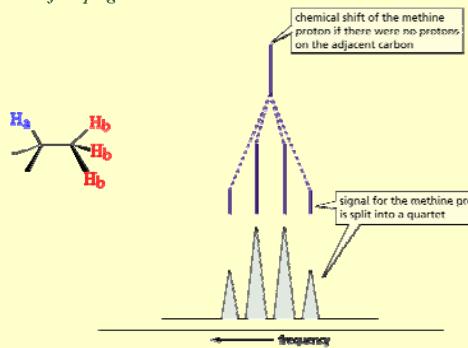
- Splitting pattern follows Pascal's triangle
 - Number of peaks and relative peak intensity determined by the number of attached nuclei
 - Peak separation determined by coupling constant (J)



Pascal's triangle

www.anilmishra.name 28

Nuclear Spin Interactions


Scalar J Coupling

www.anilmishra.name 29

Nuclear Spin Interactions

Scalar J Coupling

chemical shift of the methine proton if there were no protons on the adjacent carbon

signal for the methine proton is split into a quartet

www.anilmishra.name 30

Nuclear Spin Interactions

Scalar J Coupling

Signal Splitting

Allowed Transitions $\Delta I_A = \pm 1 \Delta I_B = 0$

www.anilmishra.name 31

Nuclear Spin Interactions

Scalar J Coupling

Signal Splitting

Allowed Transitions $\Delta I_A = \pm 1 \Delta I_B = 0$

www.anilmishra.name 32

Nuclear Spin Interactions

Scalar J Coupling

- The ways in which the magnetic fields of three protons can be aligned

www.anilmishra.name 33

Nuclear Spin Interactions

Scalar J Coupling

www.anilmishra.name 34

Nuclear Spin Interactions

Coupling Constant

- The coupling constant (J) is the distance between two adjacent peaks of a split NMR signal in hertz
- Coupled protons have the same coupling constant

www.anilmishra.name 35

Nuclear Spin Interactions

Scalar J Coupling

Coupling Rules:

- Equivalent nuclei do not interact
- Coupling constants decreases with separation
 - typically # 3 bonds
- Multiplicity given by number of attached equivalent protons ($n+1$)
- Multiple spin systems \rightarrow multiplicity $\rightarrow (n_a+1)(n_b+1)$
- Relative peak heights/area follows Pascal's triangle
- Coupling constant are independent of applied field strength

www.anilmishra.name 36