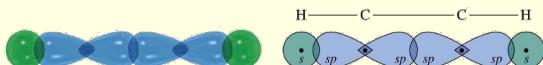
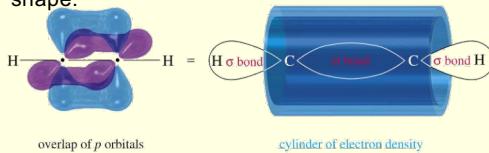


Alkynes

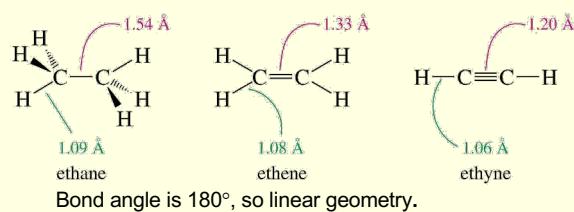
Alkynes


- General formula is C_nH_{2n-2}
- Alkynes contain a triple bond.
- Carbon-carbon triple bond result from sp orbital on each C forming a sigma bond and unhybridized p_x and p_y orbitals forming a π bond
- The remaining sp orbitals form bonds to other atoms at 180° to C-C triple bond.


1

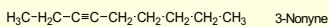
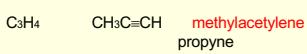
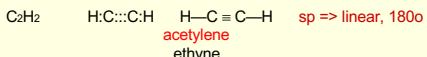
Electronic Structure

- The sigma bond is $sp-sp$ overlap.


- The two pi bonds are unhybridized p overlaps at 90° , which blend into a cylindrical shape.

2

Bond Lengths

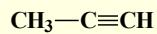



- More s character, so shorter length.
- Three bonding overlaps, so shorter.

3

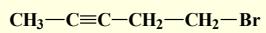
Nomenclature

- General hydrocarbon rules apply with “-yne” as a suffix indicating an alkyne.

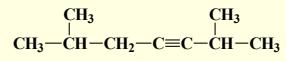
4


Alkynes

Nomenclature: IUPAC

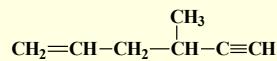

- Find the longest chain containing the triple bond.
- Change **-ane** ending to **-yne**.
- Number the chain, starting at the end closest to the triple bond.
- Give branches or other substituents a number to locate their position.

5

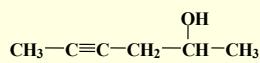

Nomenclature

propyne

5-bromo-2-pentyne


2,6-dimethyl-3-heptyne

6

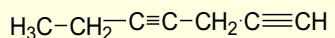

Nomenclature

Additional Functional Groups

- All other functional groups, except ethers and halides have a higher priority than alkynes.

4-methyl-1-hexen-5-yne

4-hexyn-2-ol


7

Diyines and Triynes

- A compound with two triple bonds is a diyine.

A triyne has three triple bonds.

- Number from chain that ends nearest a double or triple bond – double bonds is preferred if both are present in the same relative position.

1,4-Heptadiyne

8

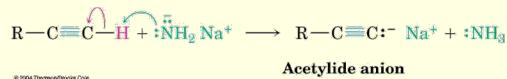
Alkynes

Acidity of Alkynes

- Terminal alkynes, $R-C\equiv C-H$, are more acidic than other hydrocarbons.
- Acetylene \rightarrow acetylide by NH_2^- , but not by OH^- or RO^- .
- More *s* character, so pair of electrons in anion is held more closely to the nucleus. Less charge separation, so more stable.

9

Acidity Table


Compound	Conjugate Base	Hybridization	<i>s</i> Character	pK_a	
$H-C(H)(H)-C(H)H$	$H-C(H)(H)-C(H)H$	sp^3	25%	50	weakest acid
$H-C(H)=C(H)H$	$H-C(H)=C(H)H$	sp^2	33%	44	
$:NH_3$	$:NH_2^-$	(ammonia)		35	
$H-C\equiv C-H$	$H-C\equiv C^-$	sp	50%	25	
$R-OH$	$R-OH_2^+$	(alcohols)		16-18	

10

Acidity of Alkynes

Formation of Acetylide Anions

- Terminal alkynes are weak Brønsted acids (alkenes and alkanes are much less acidic, $pK_a \sim 25$.)
- Reaction of strong anhydrous bases (sodium amide) with a terminal acetylene produces an **acetylide ion**
- The sp -hybridization at carbon holds negative charge relatively close to the positive nucleus

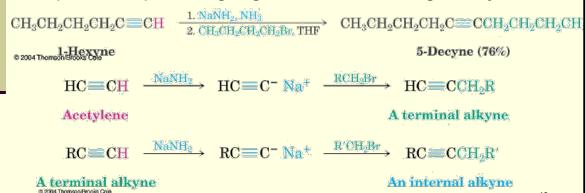
© 2004 Thomson/McGraw-Hill

$NaNH_2$ is produced by the reaction of ammonia with sodium metal.

11

Alkynes from Acetylides

- Acetylide ions are good nucleophiles.
- S_N2 reaction with 1° alkyl halides lengthens the alkyne chain.

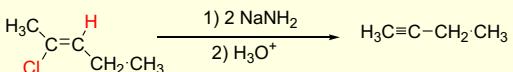


12

Alkynes

Alkylation of Acetylide Anions

- Acetylide ions can react as nucleophiles as well as bases
- Reaction with a primary alkyl halide produces a hydrocarbon that contains carbons from both partners, providing a general route to larger alkynes

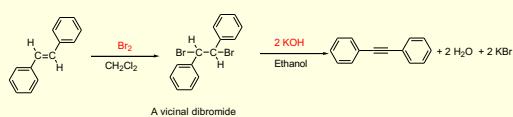


13

Preparation of Alkynes:

Elimination Reactions of Dihalides

- Treatment of a 1,2 dihaloalkane with KOH or NaOH (strong Base) produces a two-fold elimination of HX

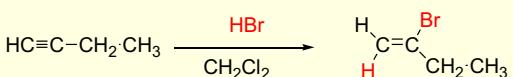


14

Preparation of Alkynes

From Vicinal Dihalides

- Vicinal dihalides are available from addition of bromine or chlorine to an alkene.
- Intermediate is a vinyl halide.

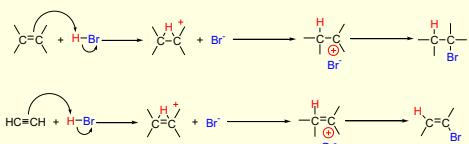


15

Reactions of Alkynes

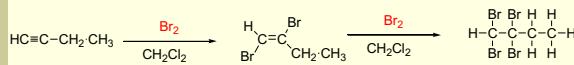
Addition of HX

- Addition reactions of alkynes are similar to those of alkenes
- Intermediate alkene reacts further with excess reagent
- Regiospecificity according to Markovnikov



16

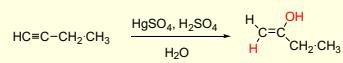
Alkynes


Reactions of Alkynes

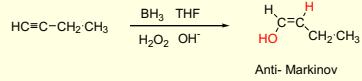
- Addition of H-X to alkyne should produce a vinylic carbocation intermediate
 - Secondary vinyl carbocations form less readily than primary alkyl carbocations
 - Primary vinyl carbocations probably do not form at all

Reactions of Alkynes

- Addition of Bromine and Chlorine
 - Initial addition gives trans intermediate.
 - Product with excess reagent is tetrahalide.

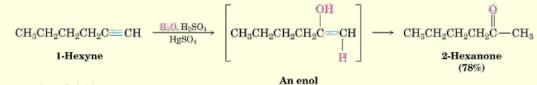


17


18

Hydration of Alkynes

- Addition of H-OH as in alkenes
 - Mercury (II) catalyzes Markovnikov oriented addition

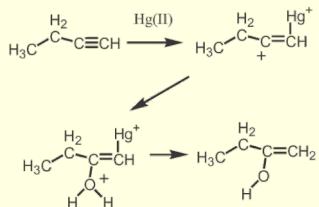

- Hydroboration-oxidation gives the non-Markovnikov product

Reactions of Alkynes

Mercury(II)-Catalyzed Hydration

- Alkynes do not react with aqueous protic acids
- Mercuric ion (as the sulfate) is a Lewis acid catalyst that promotes addition of water in Markovnikov orientation
- The immediate product is a vinylic alcohol, or enol, which spontaneously transforms to a ketone

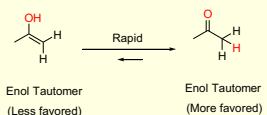
19


20

Alkynes

Reactions of Alkynes

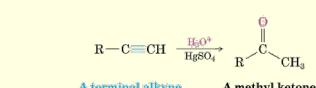
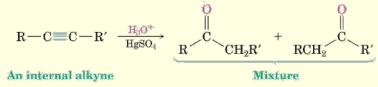
Mechanism of Mercury(II)-Catalyzed Hydration


- Addition of Hg(II) to alkyne gives a vinylic cation
- Water adds and loses a proton
- A proton from aqueous acid replaces Hg(II)

21

Keto-enol Tautomerism

- Isomeric compounds that can rapidly interconvert by the movement of a proton are called **tautomers** and the phenomenon is called tautomerism
- Enols rearrange to the isomeric ketone by the rapid transfer of a proton from the hydroxyl to the alkene carbon
- The keto form is usually so stable compared to the enol that only the keto form can be observed

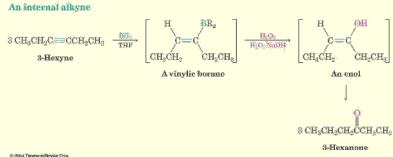



22

Reactions of Alkynes

Hydration of Unsymmetrical Alkynes

- If the alkyl groups at either end of the C-C triple bond are not the same, both products can form and this is not normally useful
- If the triple bond is at the first carbon of the chain (then H is what is attached to one side) this is called a **terminal alkyne**
- Hydration of a terminal always gives the methyl ketone, which is useful

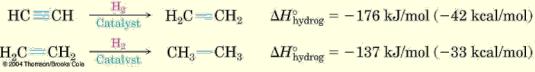

© 2004 Thomson Delmar Learning

23

Reactions of Alkynes

Hydroboration/Oxidation of Alkynes

- BH_3 (borane) adds to alkynes to give a vinylic borane
- Oxidation with H_2O_2 produces an enol that converts to the ketone or aldehyde
- Process converts alkyne to ketone or aldehyde with orientation opposite to mercuric ion catalyzed hydration


24

Alkynes

Reactions of Alkynes

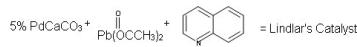
Reduction

- Addition of H_2 over a metal catalyst (such as palladium on carbon, Pd/C) converts alkynes to alkanes (complete reduction)
- The addition of the first equivalent of H_2 produces an alkene, which is more reactive than the alkyne so the alkene is not observed

25

Lindlar catalyst

- A Lindlar catalyst is a heterogeneous catalyst that consists of palladium deposited on calcium carbonate which is then poisoned with various forms of lead or sulphur.
- It is used for the hydrogenation of alkynes to alkenes
 - Without further reduction into alkanes
- Named after its inventor **Herbert Lindlar**

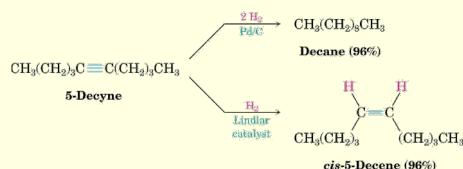

26

25

26

Lindlar catalyst

- Lindlar's catalyst is a palladium catalyst poisoned with traces of lead and quinoline,
 - Lead and Quinoline acts as poison that reduce its activity such that it can only reduce alkynes, not alkenes.
 - It always gives the cis-alkene, in contrast to Na/NH_3 , which gives the trans alkenes.
 - Lindlar's catalyst doesn't really have a "structure.



27

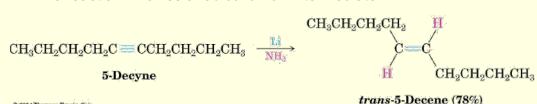
Reactions of Alkynes

Conversion of Alkynes to cis-Alkenes

- Addition of H_2 using chemically deactivated palladium on calcium carbonate as a catalyst (the *Lindlar catalyst*) produces a cis alkene
- The two hydrogens add *syn* (from the same side of the triple bond)

28

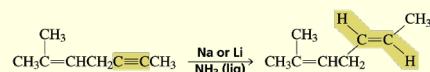
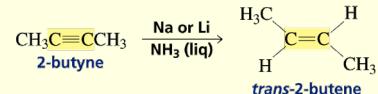
27


28

Alkynes

Reactions of Alkynes

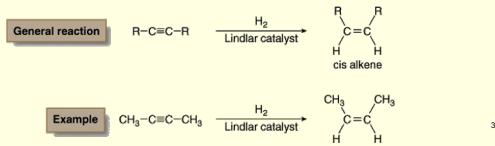
Conversion of Alkynes to trans-Alkenes



- Anhydrous ammonia (NH_3) is a liquid below -33°C
 - Alkali metals dissolve in liquid ammonia and function as reducing agents
- Alkynes are reduced to trans alkenes with sodium or lithium in liquid ammonia
- The reaction involves a *radical anion* intermediate

© 2004 Thomson/Brooks/Cole

29

Dissolving-Metal Reduction

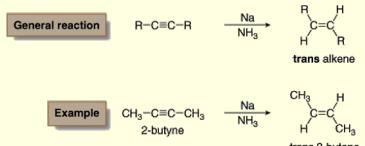


30

Dissolving-Metal Reduction

Alkyne reduction to a Cis Alkene

- Reduction of an alkyne to a cis alkene is a stereoselective reaction, because only one stereoisomer is formed.
- Hydroboration-acidification instead of Lindlar's catalyst can be used to get a cis alkene.



31

Dissolving-Metal Reduction

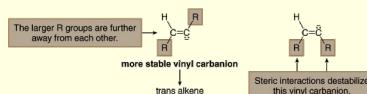
Alkyne reduction to a Trans Alkene

- In a dissolving metal reduction (such as Na in NH_3), the elements of H_2 are added in an anti fashion to form a trans alkene.
- Na has only one electron, so, electrons for the reduction are added sequentially from 2 Na atoms.

32

Dissolving-Metal Reduction

Alkyne reduction to a Trans Alkene


- Dissolving metal reduction of a triple bond with Na in NH_3 is a stereoselective reaction because it forms a trans product exclusively.
- Dissolving metal reductions always form the more stable trans product preferentially.

33

Dissolving-Metal Reduction

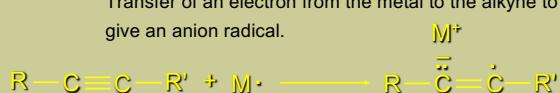
Alkyne reduction to a Trans Alkene

- The trans alkene is formed because the vinyl carbanion intermediate that is formed is more stable when the larger R groups are further away from each other to avoid steric interactions. Protonation of this anion leads to the more stable trans adduct.

34

Dissolving-Metal Reduction

- Metal (Li, Na, K) is reducing agent;
 - H_2 is not involved
 - There are four steps
 - Electron transfer
 - Proton transfer
 - Electron transfer
 - Proton transfer


35

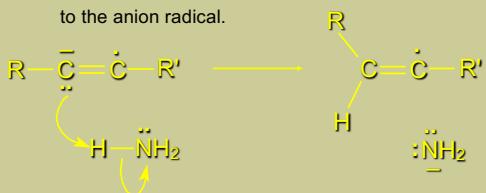
Dissolving-Metal Reduction

Mechanism

Step 1 (Electron Transfer)

Transfer of an electron from the metal to the alkyne to give an anion radical.

36

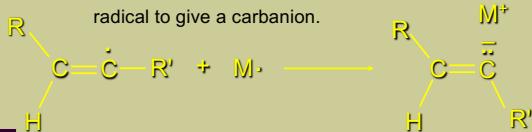

Alkynes

Dissolving-Metal Reduction

Mechanism

Step 2 (Proton Transfer)

Transfer of a proton from the solvent (liquid ammonia) to the anion radical.



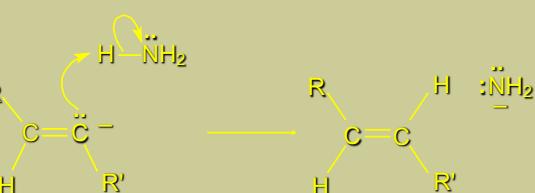
Dissolving-Metal Reduction

Mechanism

Step 3 (Electron Transfer)

Transfer of an electron from the metal to the alkenyl radical to give a carbanion.

37


38

Dissolving-Metal Reduction

Mechanism

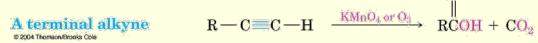
Step 4 (Proton Transfer)

Transfer of a proton from the solvent (liquid ammonia) to the carbanion.

Dissolving-Metal Reduction

Summary of Alkyne Reductions

Three methods to reduce a triple bond


39

40

Reactions of Alkynes

Oxidative Cleavage of Alkynes

- Strong oxidizing reagents (O_3 or $KMnO_4$) cleave internal alkynes, producing two carboxylic acids
- Terminal alkynes are oxidized to a carboxylic acid and carbon dioxide
- Neither process is useful in modern synthesis – were used to elucidate structures because the products indicate the structure of the alkyne precursor

