

Alcohols

An alcohol consists of a carbon chain with a hydroxy group (-OH) attached

Methanol $\text{CH}_3\text{-OH}$

Ethanol $\text{CH}_3\text{-CH}_2\text{-OH}$

Propanol $\text{CH}_3\text{-CH}_2\text{-CH}_2\text{-OH}$

Phenol

www.anilmishra.name

1

Nomenclature

Nomenclature of Alcohols

- Alcohols are named by dropping the e ending of the parent alkane and replacing with ol. The -OH group can also be named as a substituent using the group name, hydroxy.
- Still another nomenclature involves naming the alkyl group followed by a space and the word alcohol

www.anilmishra.name

2

Nomenclature

- General formula of alcohols $\text{C}_n\text{H}_{2n+2}\text{O}$
- First member is Methanol

a) Displayed formula is

b) Systematic name: methanol
(from : methan + ol)

c) Structural formula - CH_3OH

d) Molecular formula CH_4O

www.anilmishra.name

3

Nomenclature

Examples:

CH_3OH Methanol

$\text{CH}_3\text{CH}_2\text{OH}$ Ethanol

$\text{CH}_3\text{CH}_2\text{CH}_2\text{OH}$ propan-1-ol or 1-propanol

$\text{CH}_3\text{CH}(\text{OH})\text{CH}_3$ propan-2-ol or 2-propanol

www.anilmishra.name

4

Nomenclature

if more than one hydroxyl is present, the prefixes di-, tri-, tetra-... are used the terminal "e" is retained on the parent alkane name.

Common name is Glycerol and systematic name is 1,2,3-propanetriol.

www.anilmishra.name

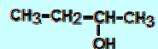
5

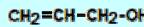
Nomenclature

Name the following molecules:

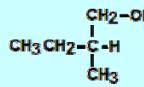
$\text{CH}_3\text{-OH}$

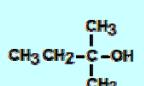
$\text{CH}_3\text{-CH}_2\text{-OH}$


$\text{CH}_3\text{-CH}_2\text{-CH}_2\text{-OH}$


www.anilmishra.name

6


Nomenclature


• 2-butanol

• 2-propene-1-ol

• 2-methyl-1-butanol

• 2-methyl-2-butanol

7

www.anilmishra.name

Alcohol Classification

Alcohols may be classified as

- Primary
- Secondary
- Tertiary

Depending on whether the carbon atom that is attached to the -OH group is surrounded by one, two or three other carbon atoms

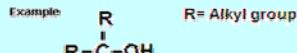
8

www.anilmishra.name

Primary Alcohols

A primary alcohol is bonded to carbon atom that is bonded also to one or no carbon atom carbon atom.

Example


Note: Only one other carbon atom is attached to the second carbon containing the OH group

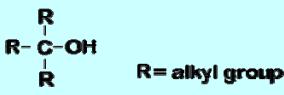
9

www.anilmishra.name

Secondary Alcohols

A secondary alcohol is attached to a carbon atom that is bonded also to 2 carbon atoms.

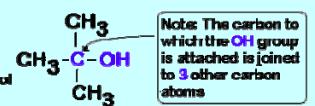
2 propanol or isopropyl alcohol


Note: The carbon atom on which the -OH is attached is joined to 2 other carbon atoms

10

www.anilmishra.name

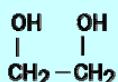
Tertiary Alcohols


A tertiary alcohol has three other carbons attached to the carbon on which the -OH group resides

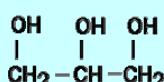
R = alkyl group

Example

2 methyl-2-propanol
or
tertiary butyl alcohol


Note: The carbon to which the OH group is attached is joined to 3 other carbon atoms

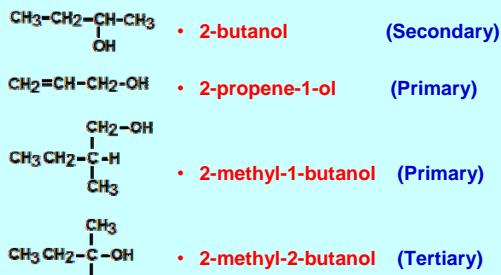
11


www.anilmishra.name

Polyhydroxy alcohols

Alcohols that have more than one OH group are known as polyhydroxyl alcohols. Two examples are shown below

1,2 ethanediol
or ethylene glycol



1,2,3 propanetriol
or glycerol

12

www.anilmishra.name

Alcohol Classification

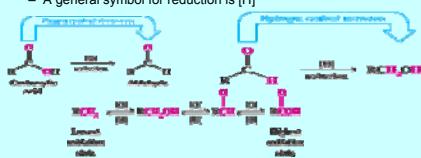
www.anilmishra.name

13

Preparation of Alcohols

Reactions of Carbonyl Compounds with Nucleophiles

- Carbonyl groups can undergo nucleophilic addition
 - The nucleophile adds to the $\delta+$ carbon
 - The π electrons shift to the oxygen
 - The carbon becomes sp^3 hybridized and therefore tetrahedral
 - Hydride ions and carbanions are two examples of nucleophiles that react with the carbonyl carbon


- Carbonyl groups and alcohols can be interconverted by oxidation and reduction reactions
 - Alcohols can be oxidized to aldehydes; aldehydes can be reduced to alcohols

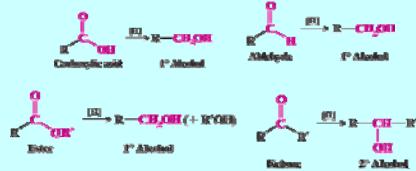
14

www.anilmishra.name

Oxidation-Reduction Reactions

- Reduction: increasing the hydrogen content or decreasing the oxygen content of an organic molecule
 - A general symbol for reduction is $[H]$

- Oxidation: increasing the oxygen content or decreasing the hydrogen content of an organic molecule
 - A general symbol for oxidation is $[O]$
 - Oxidation can also be defined as a reaction that increases the content of any element more electronegative than carbon


www.anilmishra.name

15

Alcohols by Reduction

Carbonyl Compounds

- A variety of carbonyl compounds can be reduced to alcohols

16

www.anilmishra.name

Alcohols by Reduction

Carboxylic acids

- Carboxylic acids can be reduced to primary alcohols
- These are difficult reductions and require the use of powerful reducing agents such as lithium aluminum hydride (LiAlH_4 , also abbreviated LAH)

17

www.anilmishra.name

Alcohols by Reduction

Esters

- Esters are also reduced to primary alcohols
 - LAH or high pressure hydrogenation can accomplish this transformation

18

www.anilmishra.name

Alcohols by Reduction

- Aldehydes and ketones are reduced to 1° and 2° alcohols respectively
 - Aldehydes and ketones are reduced relatively easily; the mild reducing agent sodium borohydride (NaBH_4) is typically used
 - LAH and hydrogenation with a metal catalyst can also be used

www.anilmishra.name

19

Alcohols by Reduction

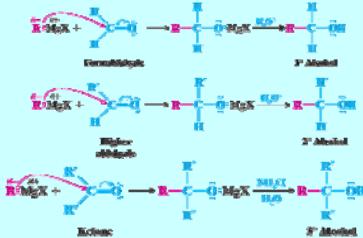
- The key step in the reduction is reaction of hydride with the carbonyl carbon

20

www.anilmishra.name

Alcohols by Reduction

- Carboxylic acids and esters are considerably less reactive to reduction than aldehydes and ketones and require the use of LAH



www.anilmishra.name

21

Alcohols from Grignard Reagents

- Aldehydes and ketones react with Grignard reagents to yield different classes of alcohols depending on the starting carbonyl compound

22

www.anilmishra.name

Alcohols from Grignard Reagents

- Esters react with two molar equivalents of a Grignard reagent to yield a tertiary alcohol
 - A ketone is formed by the first molar equivalent of Grignard reagent and this immediately reacts with a second equivalent to produce the alcohol
 - The final product contains two identical groups at the alcohol carbon that are both derived from the Grignard reagent

www.anilmishra.name

23

Properties of Alcohols

The physical properties of alcohols are similar to those of both water and hydrocarbons

The shorter chain alcohols such as methanol and ethanol are similar to water, in general they

- have higher boiling points than hydrocarbons but lower than water
- dissolve in water to some degree
- are more polar than hydrocarbons but less polar than water

24

www.anilmishra.name

Physical Properties

- 1. **Boiling point is higher** than hydrocarbon. (Due to intermolecular H-bond)
- 2. **Spirituous odour** with burning taste.
- 3. Short chain alcohols, up till 4 carbon atoms are **soluble in water**.

25

www.anilmishra.name

Reactions of Alcohols

Alcohols undergo several types of reactions including:

- Oxidation
- Dehydration
- Reactions with active metals
- Esterification
- Substitution

26

www.anilmishra.name

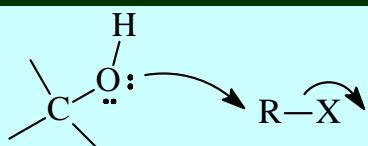
Types of Alcohol Reactions

- Dehydration to alkene
- Oxidation to aldehyde, ketone
- Substitution to form alkyl halide
- Reduction to alkane
- Esterification
- Tosylation
- Williamson synthesis of ether

27

www.anilmishra.name

Reactions of Alcohols

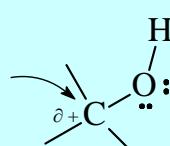

TABLE 11-1 Types of Reactions of Alcohols

$R-OH$	Type of reaction	Product
$R-OH$	dehydration	alkenes
$R-OH$	oxidation	carboxylic acids, aldehydes, ketones
$R-OH$	substitution	$R-X$ halides
$R-OH$	reduction	alkanes
$R-OH$	esterification	$R-O-C(=O)-R'$
$R-OH$	precipitation	$R-OH_2^+$ (soluble esters, precip. leaving group)
$R-OH$	O fission	$R-OH$ esters
$R-OH$	O fission	$R-OH$ ethers

28

www.anilmishra.name

Alcohol as a Nucleophile


- ROH is weak nucleophile
- RO⁻ is strong nucleophile
- New O-C bond forms, O-H bond breaks.

29

www.anilmishra.name

Alcohol as an Electrophile

- OH⁻ is not a good leaving group unless it is protonated, but most nucleophiles are strong bases which would remove H⁺.
- Convert to tosylate (good leaving group) to react with strong nucleophile (base)

C-Nuc bond forms,
C-O bond breaks

30

www.anilmishra.name

Oxidation

Primary alcohol: $\text{R}-\text{CH}_2-\text{OH} + [\text{O}] \rightarrow \text{R}-\text{CHO} + \text{H}_2\text{O}$ (Aldehyde / Alkanal) $\xrightarrow{\text{excess } [\text{O}]} \text{R}-\text{COOH}$ (Carboxylic acid)

Secondary alcohol: $\text{R}-\text{CH}(\text{R}')-\text{OH} + [\text{O}] \rightarrow \text{R}-\text{C}(=\text{O})-\text{R}'$ (Ketone)

Common O.A. : $\text{K}_2\text{Cr}_2\text{O}_7/\text{H}^+$, KMnO_4/H^+

37 www.anilmishra.name

Chromate Oxidation

- Step 1: A chromate ester is formed from the alcohol hydroxyl

Step 1: $\text{R}-\text{CH}_2-\text{OH} + \text{Cr}_2\text{O}_7^{2-} \rightarrow \text{R}-\text{CH}_2-\text{O}-\text{Cr}_2\text{O}_7^{2-}$

The shaded electrons are those pair to the chromate ester oxygen, except in pink.

The oxygen focus is green, another oxygen pair to a green.

Step 2: $\text{R}-\text{CH}_2-\text{O}-\text{Cr}_2\text{O}_7^{2-} \rightarrow \text{R}-\text{CH}_2-\text{O}-\text{Cr}^{3+} + \text{CrO}_4^{2-}$

Chromate ester: A molecule of water disappears in forming chromate ester - oxygen double bond forms.

38 www.anilmishra.name

Chromate Oxidation

- Step 2: An elimination reaction occurs by removal of a hydrogen atom from the alcohol carbon and departure of the chromium group with a pair of electrons.

Step 2: $\text{R}-\text{CH}_2-\text{O}-\text{Cr}^{3+} \rightarrow \text{R}-\text{CH}_2-\text{O}^- + \text{Cr}^{3+}$

The chromium atom departs with a pair of electrons (not necessarily released to the solvent; the alcohol is thereby oxidized and the chromium reduced).

39 www.anilmishra.name

Reduction of Alcohols

- Dehydrate with conc. H_2SO_4 , then add H_2
- Tosylate, then reduce with LiAlH_4

$\text{CH}_3\text{CH}(\text{OH})\text{CH}_3 \xrightarrow{\text{H}_2\text{SO}_4} \text{CH}_2=\text{CHCH}_3 \xrightarrow[\text{Pt}]{\text{H}_2} \text{CH}_3\text{CH}_2\text{CH}_3$

$\text{CH}_3\text{CH}(\text{OH})\text{CH}_3 \xrightarrow{\text{TsCl}} \text{CH}_3\text{CH}(\text{OTs})\text{CH}_3 \xrightarrow{\text{LiAlH}_4} \text{CH}_3\text{CH}_2\text{CH}_3$

40 www.anilmishra.name

Reaction with HBr

- OH of alcohol is protonated
- $-\text{OH}_2^+$ is good leaving group
- 3° and 2° alcohols react with Br^- via $\text{S}_{\text{N}}1$
- 1° alcohols react via $\text{S}_{\text{N}}2$

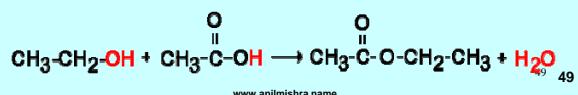
$\text{R}-\ddot{\text{O}}-\text{H} \rightleftharpoons \text{R}-\ddot{\text{O}}\text{H}^+ \xrightarrow{\text{H}_3\text{O}^+} \text{R}-\ddot{\text{O}}^{\oplus}\text{H} \xrightarrow{\text{Br}^-} \text{R}-\text{Br}$

41 www.anilmishra.name

Reaction with HCl

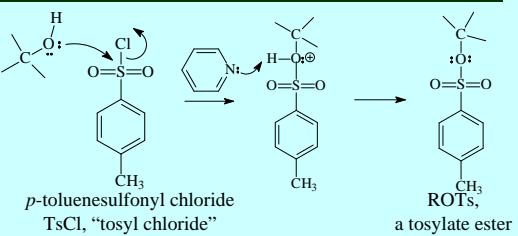
- Chloride is a weaker nucleophile than bromide.
- Add ZnCl_2 , which bonds strongly with -OH, to promote the reaction.
- The chloride product is insoluble.
- Lucas test: ZnCl_2 in conc. HCl
 - 1° alcohols react slowly or not at all.
 - 2° alcohols react in 1-5 minutes.
 - 3° alcohols react in less than 1 minute.

42 www.anilmishra.name



Esterification

An alcohol reacts with an alkanoic acid to form an ester and water.



Example

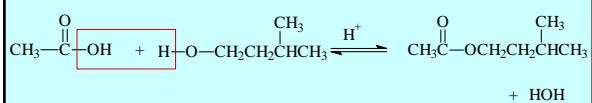
www.anilmishra.name

Formation of Tosylate Ester

50

www.anilmishra.name

S_N2 Reactions of Tosylates

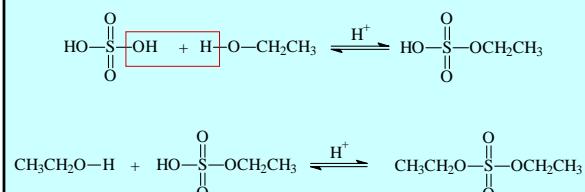

- With hydroxide produces alcohol
- With cyanide produces nitrile
- With halide ion produces alkyl halide
- With alkoxide ion produces ether
- With ammonia produces amine salt
- With LiAlH₄ produces alkane

51

www.anilmishra.name

Fischer Esterification

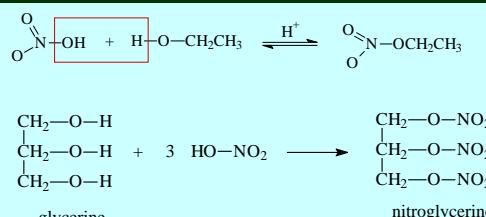
- Acid + Alcohol yields Ester + Water
- Sulfuric acid is a catalyst.
- Each step is reversible.



52

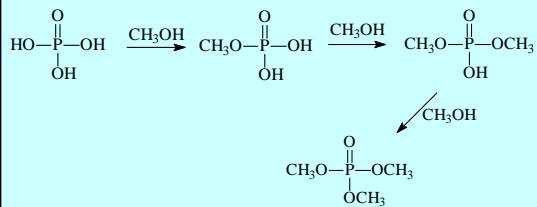
www.anilmishra.name

Sulfate Esters


Alcohol + Sulfuric Acid

www.anilmishra.name

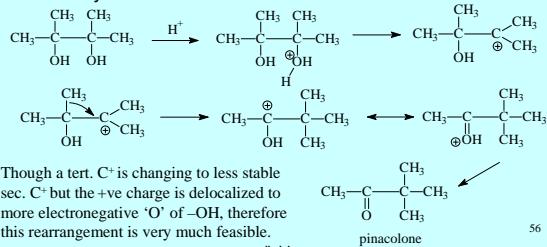
53


Nitrate Esters

54

www.anilmishra.name

Phosphate Esters

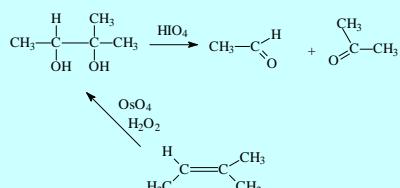

www.anilmishra.name

55

Unique Reactions Pinacol-Pinacolone Rearrangement

- Pinacol: 2,3-dimethyl-2,3-butanediol

- Dehydration with sulfuric acid


Though a tert. C⁺ is changing to less stable sec. C⁺ but the +ve charge is delocalized to more electronegative 'O' of -OH, therefore this rearrangement is very much feasible.

www.anilmishra.name

56

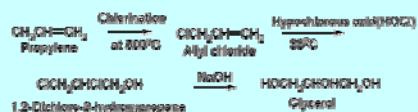
Periodic Cleavage of Glycols

- Same products formed as from ozonolysis of the corresponding alkene.

www.anilmishra.name

57

Trihydric Alcohol: Glycerol (1,2,3-Propanetriol)


- Glycerol is commonly known as glycerine. It occurs in nature in oils and fats, which are mixtures of esters of glycerol (glycerides) with higher fatty acids and unsaturated acids.

www.anilmishra.name

58

Manufacture

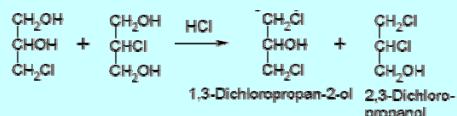
- Glycerol is obtained in large quantities as a by-product in the manufacture of soap.
- Glycerol from petroleum by synthetic method.** Large quantities of glycerol are now synthesized from propylene obtained from petroleum.

www.anilmishra.name

59

Glycerol Complete synthesis

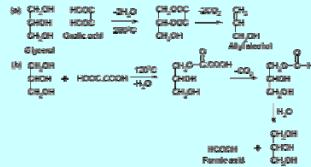
- The synthesis of glycerol is of great theoretical importance, because glycerol is present in plants and animals, and also because this synthesis constitutes a step in the synthesis of simple sugars.
- Starting with carbon and hydrogen, we may obtain acetylene and then acetaldehyde and acetic acid.
- Glycerol can be synthesized through the following series of reactions from acetic acid.


www.anilmishra.name

60

Chemical Properties

- On passing more HCl gas, keeping the same temperature, a mixture of two dichloro derivatives (1,3dichloropropan-2-ol and 2,3-dichloropropanol) is obtained, provided the quantity of HCl is 25% more than the calculated quantity.

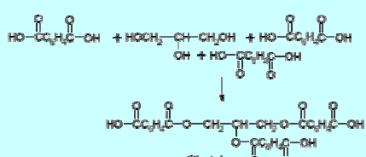

67

www.anilmishra.name

Chemical Properties

- Action with acids.

- Action of oxalic acid. It gives allyl alcohol at 260°C and formic acid at 120°C.


Thus it is a continuous process to get formic acid from oxalic acid.

68

www.anilmishra.name

Chemical Properties

- With phthalic acid. Glyptals or alkyl resins are formed which are useful for the manufacture of paints and lacquers.

69

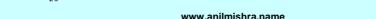
www.anilmishra.name

Chemical Properties

- Oxidation.

- It gives different oxidation products depending on the nature of the oxidizing agent used. Thus,

- Bromine water gives glyceric aldehyde and dihydroxyacetone.



70

www.anilmishra.name

Chemical Properties

- Conc. HNO_3 gives glyceric acid.
- Bromine gives meso-oxalic acid.
- Dil. HNO_3 oxidizes it to glyceric acid and then tetroonic acid.
- On heating with KHSO_4 it loses two water molecules and acrolein is formed.

71

www.anilmishra.name

Nitro Glycerine

Nitroglycerine. It is manufactured by adding glycerol gradually to a cold mixture of fuming nitric acid and concentrated sulphuric acid.

Nitroglycerine is a poisonous colourless, oily liquid, and is insoluble in water. When ignited, it usually burns quietly. When heated rapidly, struck, or detonated, it explodes violently. The decomposition, which accompanies explosion, gives gaseous products occupying about 11,000 times the volume of nitroglycerine.

It is used in the manufacture of dynamite, by absorbing it in wood pulp and adding solid ammonium nitrate. Nitroglycerine is mixed with gun-cotton (cellulose nitrate) to make blasting gelatin or gelignite. A mixture of nitroglycerine, gun-cotton, and Vitrolite is cordite (the smokeless powder). Another use of nitroglycerine is in the treatment of angina pectoris.

72

www.anilmishra.name