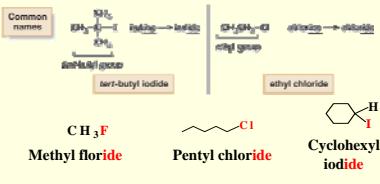
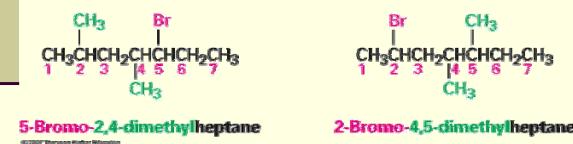


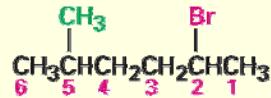
Alkyl Halides


What Is an Alkyl Halide

- An organic compound containing at least one carbon-halogen bond (C-X)
 - X (F, Cl, Br, I) replaces H
- Can contain many C-X bonds
- Properties and some uses
 - Fire-resistant solvents
 - Refrigerants
 - Pharmaceuticals and precursors


Naming Alkyl Halides

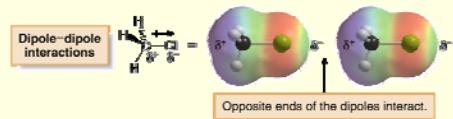
- Common names are often used for simple alkyl halides. To assign a common name:
 - Name all the carbon atoms of the molecule as a single alkyl group.
 - Name the halogen bonded to the alkyl group.
 - Combine the names of the alkyl group and halide, separating the words with a space.


Naming Alkyl Halides

- Find longest chain, name it as parent chain
 - Contains double or triple bond if present
 - Number from end nearest any substituent (alkyl or halogen)

Naming Alkyl Halides

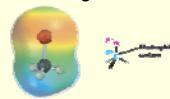
- Naming if Two Halides or Alkyl Are Equally Distant from Ends of Chain
 - Begin at the end nearer the substituent whose name comes first in the alphabet



2-Bromo-5-methylhexane
(NOT 5-bromo-2-methylhexane)

www.anilmishra.name

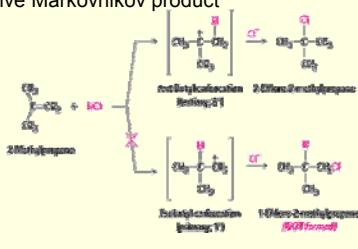
Physical Properties


- Alkyl halides are weak polar molecules. They exhibit dipole-dipole interactions because of their polar C-X bond, but because the rest of the molecule contains only C-C and C-H bonds, they are incapable of intermolecular hydrogen bonding.

www.anilmishra.name

Structure of Alkyl Halides

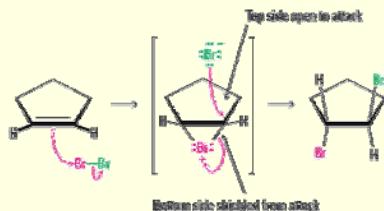
- C-X bond is longer as you go down periodic table
- C-X bond is weaker as you go down periodic table
- C-X bond is polarized with partial positive charge on carbon and partial negative charge on halogen


Molecule	Polarization		Polarization	
	Electrostatic Potential	Electrostatic Potential	Electrostatic Potential	Electrostatic Potential
CH ₃ Cl	0.09	-0.07	0.05	0.06
CH ₃ Br	0.09	-0.07	0.03	0.07
CH ₃ Ir	0.09	-0.05	0.01	0.08
CH ₃ I	0.08	-0.04	0.01	0.02

www.anilmishra.name

Preparing Alkyl Halides

From Alkenes


- Alkyl halide from addition of HCl, HBr, HI to alkenes to give Markovnikov product

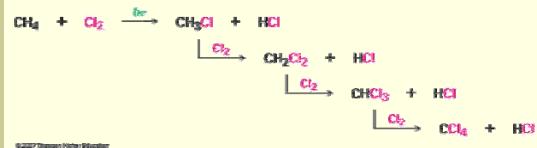
www.anilmishra.name

Preparing Alkyl Halides

- Alkyl dihalide from *anti* addition of bromine or chlorine

www.anilmishra.name

Preparing Alkyl Halides

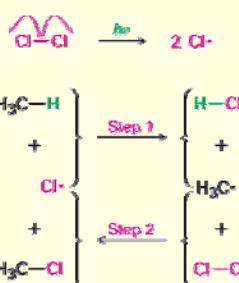

From Alkanes:

- Radical Halogenation
- Alkane + Cl₂ or Br₂, heat or light replaces C-H with C-X but gives mixtures
 - Hard to control
 - Via free radical mechanism
- It is usually not a good idea to plan a synthesis that uses this method—multiple products

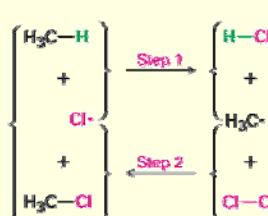
www.anilmishra.name

Preparing Alkyl Halides

Radical Chain Mechanism


www.anilmishra.name

11


Preparing Alkyl Halides

Radical Chain Mechanism

Initiation step

Propagation steps (a repeating cycle)

www.anilmishra.name

Preparing Alkyl Halides

Radical Chain Mechanism

Termination steps

Overall reaction

www.anilmishra.name

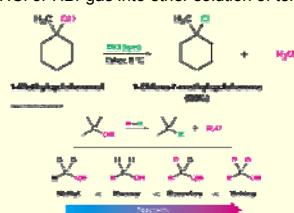
13

Alkyl Halides

Preparing Alkyl Halides

Allylic Bromination

- N-bromosuccinimide (NBS) selectively brominates allylic positions (Allylic = next to a double bond)
- Requires light for activation—just like radical halogenation
- NBS is just a source of dilute bromine radicals ($\text{Br}\cdot$)

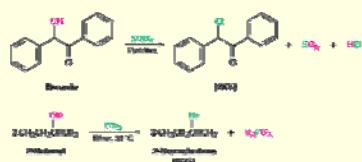


www.anilmishra.name

Preparing Alkyl Halides

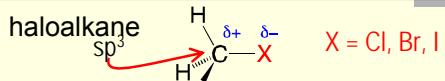
From Alcohols

- Reaction of tertiary C-OH with HX is fast and effective
 - Add HCl or HBr gas into ether solution of tertiary alcohol


www.anilmishra.name

15

Preparing Alkyl Halides


From Alcohols

- Primary and secondary alcohols react very slowly and often rearrange, so alternative methods are used: SOCl_2 or PBr_3

www.anilmishra.name

Reactions

Halogens are more electronegative than carbon

Attached to:

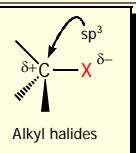
1 carbon

2 carbons

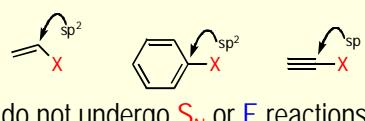
3 carbons

1° chloride
(R = carbon chain)

2° bromide

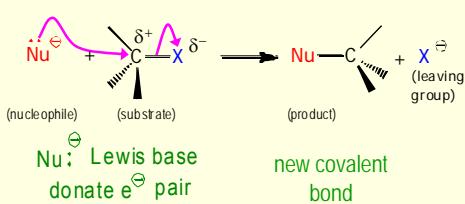


3° iodide


www.anilmishra.name

17

Reactions


Prone to undergo Nucleophilic Substitution (S_N) and Elimination Reactions (E)

do not undergo S_N or E reactions

www.anilmishra.name

Nucleophilic Substitution Reactions

Nu^- Lewis base
donate e^- pair

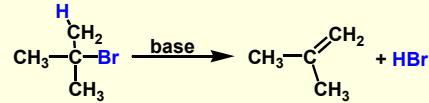
new covalent
bond

www.anilmishra.name

18

Alkyl Halides

Reactions


- Alkyl halides ($R-X$) undergo two types of reactions :
 - Substitution** reactions
 - Elimination** reactions

www.anilmishra.name

20

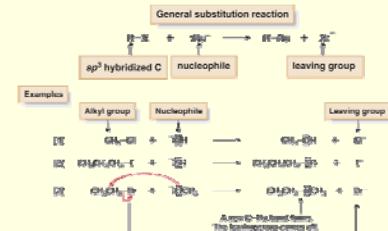
Reactions

- In an **elimination** reaction, the elements of $H-X$ are **eliminated** from $R-X$
 - The product is very often an alkene.

www.anilmishra.name

21

Reactions

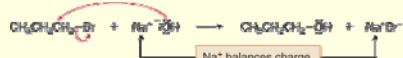

- In a **substitution** reaction, the X group in $R-X$ is **replaced** by a different group, e.g. $R-X \rightarrow R-OH + X^-$
- This is a **nucleophilic substitution** or nucleophilic displacement reaction on which OH^- displaces Br^- .
$$\begin{array}{c} H \quad H \quad \delta^+ \\ | \quad | \quad | \\ H-C-Br + OH^- \rightarrow H-C-OH + Br^- \\ | \quad | \quad | \end{array}$$
- The C-Br bond is polar, and the carbon (δ^+) is susceptible to attack by an anion or any other **nucleophile**.
 - OH^- is the **nucleophile**
 - Species which "loves nuclei" or has an affinity for positive charges
 - Br^- is the **leaving group**

www.anilmishra.name

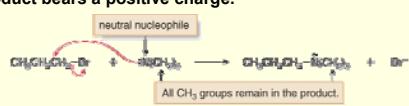
22

Reactions

- General Features of Nucleophilic Substitution
- Three components are necessary in any substitution reaction.



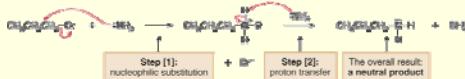
www.anilmishra.name


23

Reactions

- Negatively charged nucleophiles like HO^- and HS^- are used as salts with Li^+ , Na^+ , or K^+ counter ions to balance the charge. Since the identity of the counterion is usually inconsequential, it is often omitted from the chemical equation.

- When a neutral nucleophile is used, the substitution product bears a positive charge.

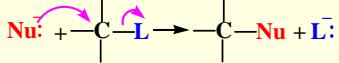


www.anilmishra.name

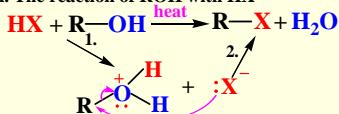
24

Reactions

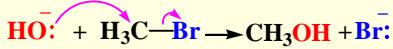
- Furthermore, when the substitution product bears a positive charge and also contains a proton bonded to O or N, the initially formed substitution product readily loses a proton in a Brønsted-Lowry acid-base reaction, forming a neutral product.


www.anilmishra.name

25


Alkyl Halides

Nucleophilic Substitution


General type of the reaction:

Ex. The reaction of ROH with HX

The reaction of alkyl halides with sodium hydroxide:

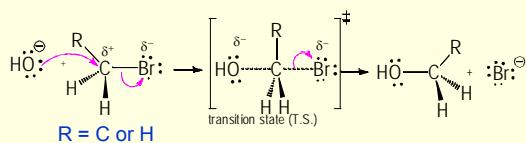
:X^- and HO: are nucleophiles

www.anilmishra.name

Mechanism

Chemists propose two limiting mechanisms for nucleophilic displacement

a fundamental difference between them is the timing of bond breaking and bond forming steps


www.anilmishra.name

26

Nucleophilic Substitution Reactions

Two types of mechanisms

1st type: $\text{S}_{\text{N}}2$ (concerted mechanism)

www.anilmishra.name

28

$\text{S}_{\text{N}}2$ Reaction:

The rate(speed) of reaction is directly proportional to the concentration of either reactant.

When the concentration of either reactant is doubled, the rate of reaction doubles.

Rate dependant on $[\text{CH}_3\text{Br}][\text{OH}^-]$
 $\text{Rate} = k[\text{CH}_3\text{Br}][\text{OH}^-]$

second order rx - bimolecular

www.anilmishra.name

29

Mechanism

At one extreme, the two processes take place simultaneously; designated $\text{S}_{\text{N}}2$

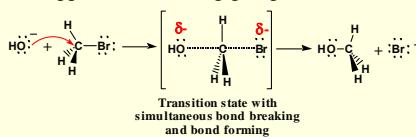
S = substitution

N = nucleophilic

2 = bimolecular

Two species are involved in the rate-determining step

rate = $k[\text{haloalkane}][\text{nucleophile}]$


www.anilmishra.name

$\text{S}_{\text{N}}2$ Reaction:

Bimolecular Nucleophilic Substitution

both reactants are involved in the transition state of the rate-determining step

the nucleophile attacks the reactive center from the side opposite the leaving group

www.anilmishra.name

31

S_N2 Reaction:

A Mechanism for the S_N2 Reaction

second order rx - **substitution nucleophilic bimolecular**

S_N2

www.anilmishra.name 32

S_N2

- An energy diagram for an S_N2 reaction
- there is one transition state and no reactive intermediate

www.anilmishra.name 33

Nucleophilic Substitution

Paul Walden made a remarkable discovery:

Inversion in configuration

www.anilmishra.name 34

Born 14 July 1863; died 24 January 1957. Paul Walden was a Latvian chemist who, while teaching at Riga, discovered the **Walden inversion**, a reversal of stereochemical configuration that occurs in many reactions of covalent compounds (1896). Due to this discovery, Walden's name is mentioned almost in all textbooks on organic chemistry published throughout the world. Walden revealed autoracemization and put the foundations to electrochemistry of nonaqueous solutions. Walden is also known for Walden's rule, which relates the conductivity and viscosity of nonaqueous solutions.

Paul Walden
1863-1957

www.anilmishra.name 35

Stereochemistry of S_N2 Reactions

- The substitution by S_N2 mechanism is **stereoselective** and proceeds with **inversion of configuration** at carbon that bears the leaving group.

www.anilmishra.name 36

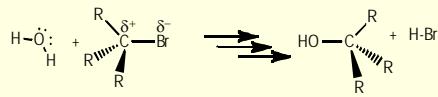
Stereochemistry of S_N2 Reactions

Like an umbrella in the gale

An inversion of configuration

www.anilmishra.name 37

SN1 Reaction

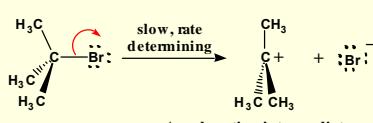

- In the other limiting mechanism, bond breaking between carbon and the leaving group is entirely completed before bond forming with the nucleophile begins. This mechanism is designated S_N1 where
 - S = substitution
 - N = nucleophilic
 - 1 = unimolecular
 - only one species is involved in the rate-determining step
 - rate = $k[\text{haloalkane}]$

www.anilmishra.name

38

SN1 Reaction

- 2nd type: S_N1 (stepwise mechanism)

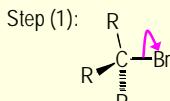

www.anilmishra.name

39

S_N1 Reaction

Unimolecular Nucleophilic Substitution

- S_N1 is illustrated by the solvolysis of *tert*-butyl bromide
 - Step 1: ionization of the C-X bond gives a **carbocation intermediate**

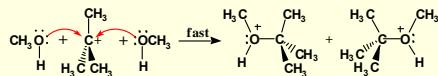


www.anilmishra.name

40

S_N1 Reaction

- 2nd type: S_N1 (stepwise mechanism)

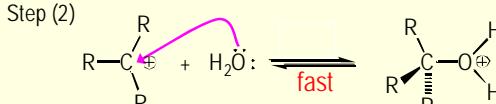


www.anilmishra.name

41

S_N1 Reaction

- Step 2: reaction of the **carbocation** (an electrophile) with methanol (a nucleophile) gives an oxonium ion

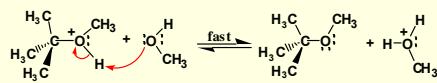


www.anilmishra.name

42

S_N1 Reaction

- 2nd type: S_N1 (stepwise mechanism)

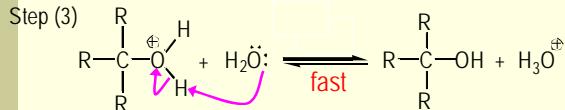


www.anilmishra.name

43

S_N1 Reaction

- Step 3: proton transfer completes the reaction

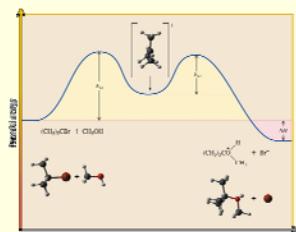


www.anilmishra.name

44

S_N1 Reaction

- 2nd type: S_N1 (stepwise mechanism)

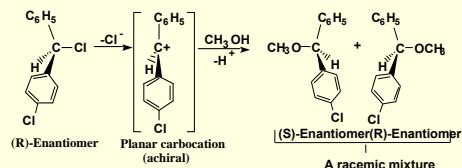


www.anilmishra.name

45

S_N1 Reaction

- An energy diagram for an S_N1 reaction



www.anilmishra.name

46

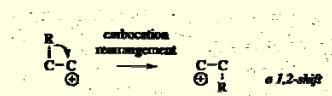
S_N1 Reaction

- For an S_N1 reaction at a stereocenter, the product is a racemic mixture
- the nucleophile attacks with equal probability from either face of the planar carbocation intermediate

www.anilmishra.name

47

Summary of S_N1 and S_N2

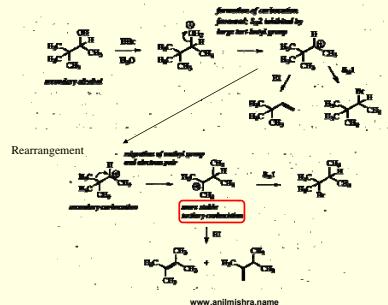

Type of Halalkane	S_N2	S_N1
Methyl CH_3X	S_N2 is favored.	S_N1 does not occur. The methyl cation is so unstable that it is never observed in solution.
Primary RCH_2X	S_N2 is favored.	S_N1 does not occur. Primary carbocations are so unstable that they are never observed in solution.
Secondary R_2CHX	S_N2 is favored in aprotic solvents with good nucleophiles.	S_N1 is favored in protic solvents with poor nucleophiles.
Tertiary R_3CX	S_N2 does not occur because of steric hindrance around the substitution center.	S_N1 is favored because of the ease of formation of tertiary carbocations.
Substitution at a stereocenter	Inversion of configuration. The nucleophile attacks the stereocenter from the side opposite the leaving group.	Racemization. The carbocation intermediate is planar, and attack by the nucleophile occurs with equal probability from either side.

www.anilmishra.name

48

Carbocation Rearrangements

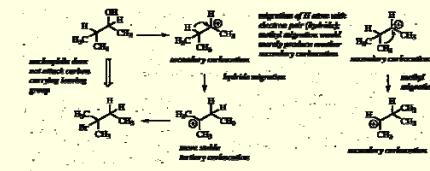
- The driving force of rearrangements is
 - To form a more stable carbocation !!!
- Happens often with secondary carbocations
 - More stable tertiary carbocation


Also 1,3- and other shifts are possible

www.anilmishra.name

49

Carbocation Rearrangements


In $S_N + E$ reactions

Carbocation Rearrangements

In $S_N + E$ reactions

■ Wagner – Meerwein rearrangements

www.anilmishra.name

51