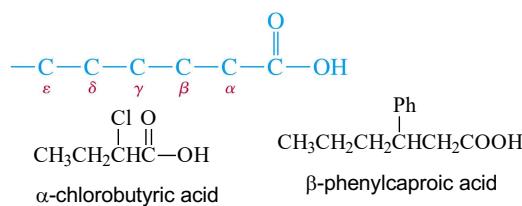


Carboxylic Acids

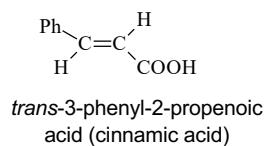
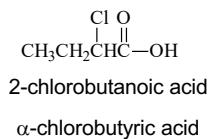
- The functional group of carboxylic acids consists of a C=O with -OH bonded to the same carbon.
- Carboxyl group is usually written -COOH.
- Aliphatic acids have an alkyl group bonded to -COOH.
- Aromatic acids have an aryl group.
- Fatty acids are long-chain aliphatic acids.


Structure

- The functional group present in a carboxylic acid is a combination of a carbonyl group and a hydroxyl group; however, the resulting **carboxyl group** (-COOH) possesses properties that are unlike those present in aldehydes/ketones and alcohols.

Common Names

- Many aliphatic acids have historical names.
- Positions of substituents on the chain are labeled with Greek letters.

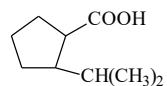



Naming Carboxylic Acids

Formula	IUPAC	Common
HCOOH	alkan- oic acid	prefix - ic acid
CH ₃ COOH	methano oic acid	formic acid
CH ₃ CH ₂ COOH	ethano oic acid	acetic acid
CH ₃ CH ₂ CH ₂ COOH	propano oic acid	propionic acid
	butano oic acid	butyric acid

IUPAC Names

- Remove -e from alkane (or alkene) name, add *-oic acid*.
- The carbon of the carboxyl group is #1.



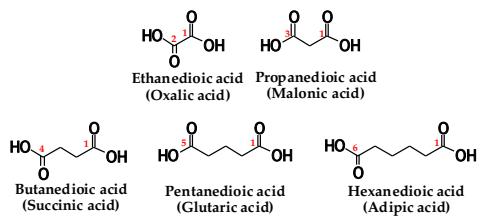
www.anilmishra.name

5

Naming Cyclic Acids

- Cycloalkanes bonded to -COOH are named as cycloalkanecarboxylic acids.
- Aromatic acids are named as benzoic acids.

www.anilmishra.name

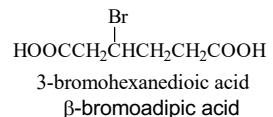

6

5

6

Nomenclature

- To name a dicarboxylic acid, add the suffix *-dioic acid* to the name of the parent alkane that contains both carboxyl groups
- The numbers of the carboxyl carbons are not indicated because they can be only at the ends of the chain



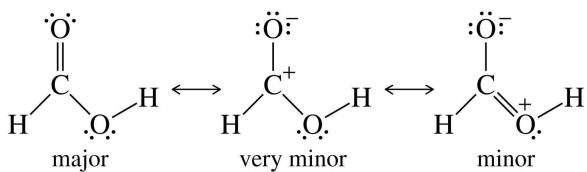
www.anilmishra.name

7

Dicarboxylic Acids

- Aliphatic diacids are usually called by their common names.
- For IUPAC name, number the chain from the end closest to a substituent.
- Two carboxyl groups on a benzene ring indicate a phthalic acid.

www.anilmishra.name

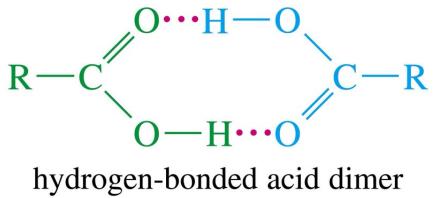

8

7

8

Structure of Carboxyl

- Carbon is sp^2 hybridized.
- Bond angles are close to 120° .
- O-H eclipsed with C=O, to get overlap of π orbital with orbital of lone pair on oxygen.



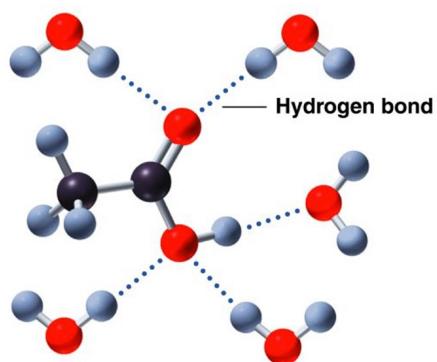
www.anilmishra.name

9

Boiling Points

Higher boiling points than similar alcohols, due to dimer formation.

hydrogen-bonded acid dimer


Acetic acid, b.p. 118°C

www.anilmishra.name

10

9

10

www.anilmishra.name

11

Melting Points

- Aliphatic acids with more than 8 carbons are solids at room temperature.
- Double bonds (especially cis) lower the melting point. Note these 18-C acids:
 - Stearic acid (saturated): 72°C
 - Oleic acid (one cis double bond): 16°C
 - Linoleic acid (two cis double bonds): -5°C

www.anilmishra.name

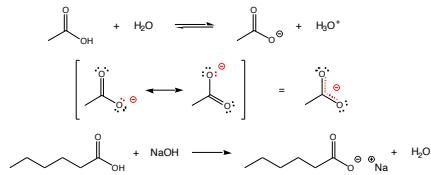
12

11

12

Solubility

- Water solubility decreases with the length of the carbon chain.
- Up to 4 carbons, acid is miscible in water.
- More soluble in alcohol.
- Also soluble in relatively nonpolar solvents like chloroform because it dissolves as a dimer.

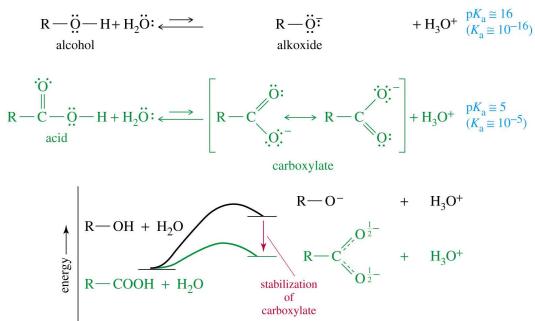

www.anilmishra.name

13

13

Acidity and Salts of Carboxylic Acids

- Carboxylic acids are weak acids (partially ionize in water)
- They are stronger acids than alcohols, or even phenols, due to the high stability of their conjugate bases (resonance)
- Carboxylic acids are neutralized by bases to form salts
- Salts of carboxylic acids are useful because they are solids at room temperature, and most are soluble in water

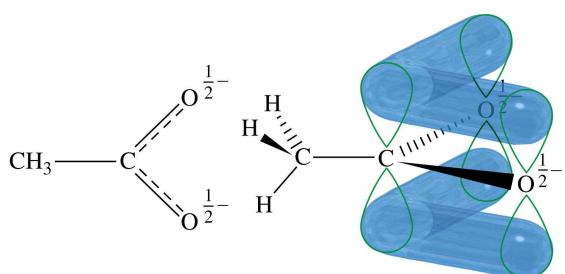


www.anilmishra.name

14

14

Acidity

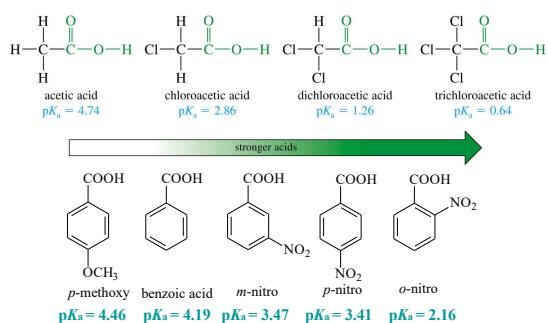


www.anilmishra.name

15

15

Resonance Stabilization



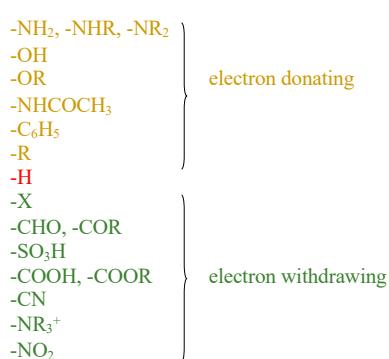
www.anilmishra.name

16

16

Substituent Effects on Acidity

17


Substituent Effects on Acidity

- **Electron withdrawing groups** will stabilize the anion, decrease the ΔH , shift the ionization to the right, increasing the K_a , **increasing acid strength**.
- **Electron donating groups** will destabilize the anion, increase the ΔH , shift the ionization in water to the left, decreasing the K_a , **decreasing acid strength**.

www.anilmishra.name

18

18

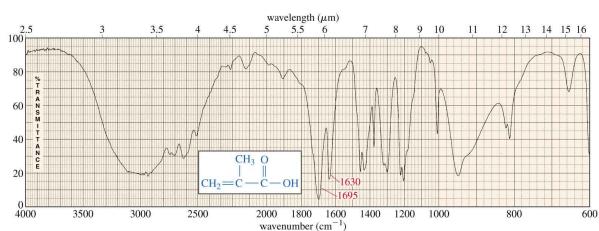

www.anilmishra.name

19

19

Salts of Carboxylic Acids

- Sodium hydroxide removes a proton to form the salt.
- Adding a strong acid, like HCl, regenerates the carboxylic acid.



www.anilmishra.name

20

20

IR Spectroscopy

21

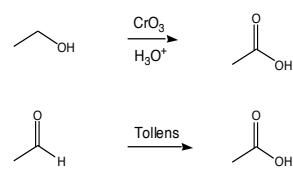
UV Spectroscopy

- Saturated carboxylic acids absorb very weakly around 200-215 nm.
- If C=C is conjugated with C=O, molar absorptivity = 10,000 at 200 nm.
- An additional conjugated double bond increases the absorption wavelength to 250 nm.

www.anilmishra.name

22

Synthesis


- Oxidation of primary alcohols and aldehydes with chromic acid.
- Cleavage of an alkene with hot KMnO₄ produces a carboxylic acid if there is a hydrogen on the double-bonded carbon.
- Alkyl benzene oxidized to benzoic acid by hot KMnO₄ or hot chromic acid.

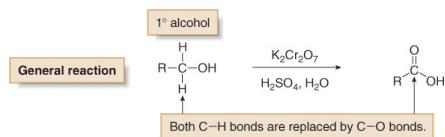
www.anilmishra.name

23

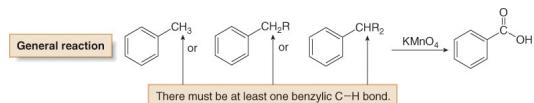
Synthesis

- Carboxylic acids can be prepared by oxidation of primary alcohols or aldehydes
- Primary alcohols form acids when treated with Jones' reagent (CrO₃/H₃O⁺), as well most other oxidizing agents
- Aldehydes can be oxidized to carboxylic acids with most oxidizing agents, such as Tollens' reagent (AgNO₃/NH₃)
 - alcohols do not react with Tollens

www.anilmishra.name


24

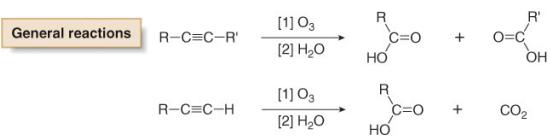
23


24

Synthesis

Oxidation of 1° alcohols

Oxidation of alkyl benzenes



www.anilmishra.name

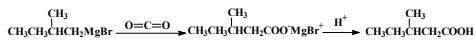
25

Synthesis

Oxidative cleavage of alkynes

www.anilmishra.name

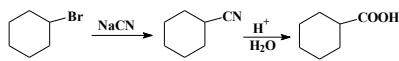
26


25

26

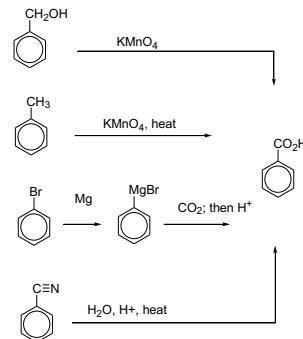
Synthesis

Grignard Synthesis


Grignard reagent + CO_2 yields a carboxylate salt.

Increases the carbon chain by one carbon.

Hydrolysis of Nitriles


- Basic or acidic hydrolysis of a nitrile produces a carboxylic acid.

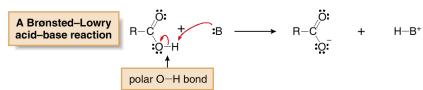
www.anilmishra.name

27

Synthesis Summary

www.anilmishra.name

28

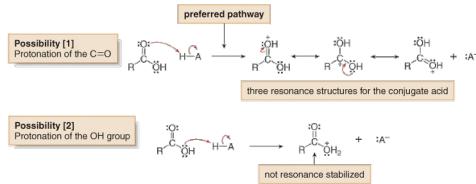

27

28

Reactions

- The most important reactive feature of a carboxylic acid is its polar O—H bond, which is readily cleaved with base.
- Carboxylic acids are strong organic acids, and as such, readily react with Brønsted-Lowry bases to form carboxylate anions.

- Carboxylic acids react as Brønsted-Lowry acids—that is, as proton donors.



www.anilmishra.name

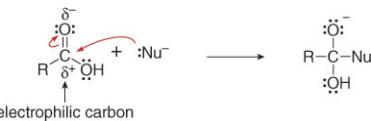
29

Reactions

- The nonbonded electron pairs on oxygen create electron-rich sites that can be protonated by strong acids (H—A).
- Protonation occurs at the carbonyl oxygen because the resulting conjugate acid is resonance stabilized (Possibility [1]).
- The product of protonation at the OH group (Possibility [2]) cannot be resonance stabilized.

www.anilmishra.name

30


29

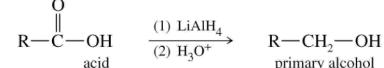
30

Reactions

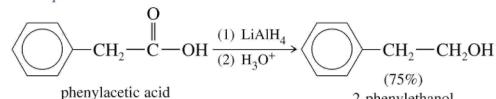
- The polar C—O bonds make the carboxy carbon electrophilic. Thus, carboxylic acids react with nucleophiles.
- Nucleophilic attack occurs at an sp^2 hybridized carbon atom, so it results in the cleavage of the π bond as well.

Nucleophilic attack at the carboxy carbon

www.anilmishra.name


31

31

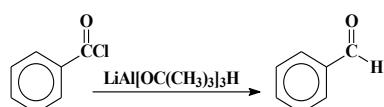

Reactions

- Reduction to 1° Alcohols

- Use strong reducing agent, LiAlH_4 .
- Borane, BH_3 in THF, reduces carboxylic acid to alcohol, but does not reduce ketone.

Example

www.anilmishra.name


32

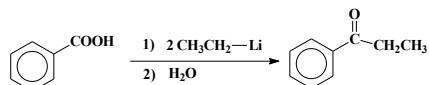
32

Reactions

■ Reduction to Aldehyde

- Difficult to stop reduction at aldehyde.
- Use a more reactive form of the acid (an acid chloride) and a weaker reducing agent, lithium aluminum tri(*t*-butoxy)hydride.

www.anilmishra.name

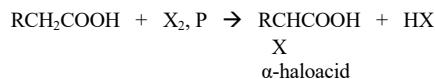
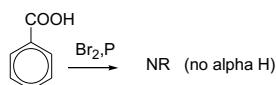
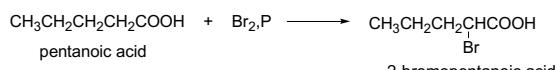

33

33

Reactions

■ Alkylation to Form Ketones

- React 2 equivalents of an organolithium reagent with a carboxylic acid.




www.anilmishra.name

34

34

Reactions

Alpha-halogenation: (Hell-Volhard-Zelinsky reaction)

 $\text{X}_2 = \text{Cl}_2, \text{Br}_2$

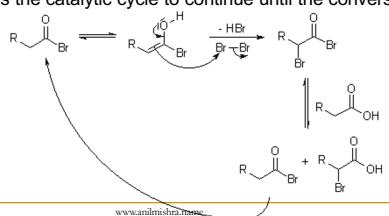
www.anilmishra.name

35

35

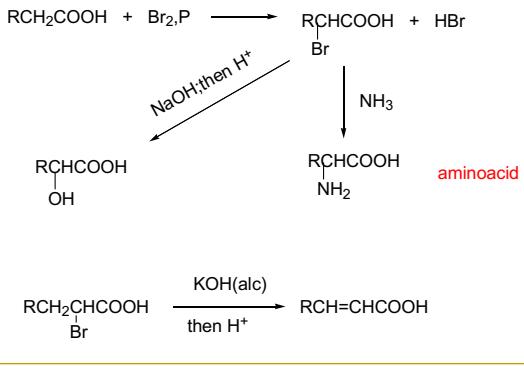
Mechanism of Hell-Volhard-Zelinsky Reaction

- Phosphorus reacts with bromine to give phosphorus tribromide, and in the first step this converts the carboxylic acid into an acyl bromide.

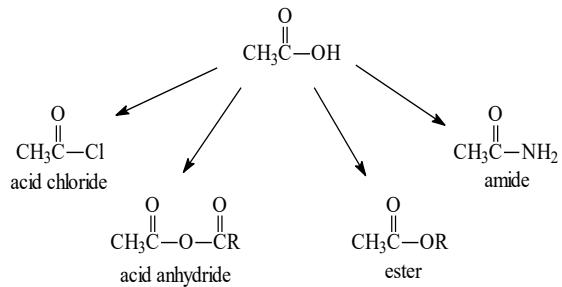

www.anilmishra.name

36

36


Mechanism of Hell-Volhard-Zelinsky Reaction

- An acyl bromide can readily exist in the enol form, and this tautomer is rapidly brominated at the α -carbon.
- The monobrominated compound is much less nucleophilic, so the reaction stops at this stage.
- This acyl intermediate compound can undergo bromide exchange with unreacted carboxylic acid via the anhydride, which allows the catalytic cycle to continue until the conversion is complete.


37

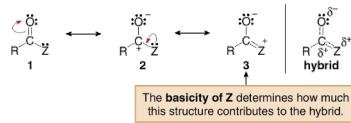
Reactions

38

Carboxylic Acid Derivatives

39

40


Carboxylic Acid Derivatives

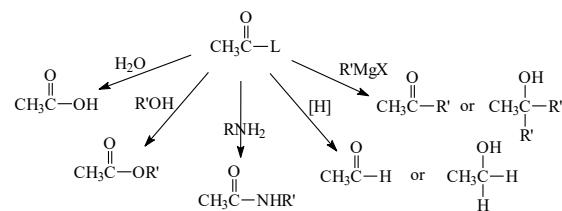
- The group bonded to the acyl carbon determines the class of compound:
 - OH, carboxylic acid
 - Cl, acid chloride
 - OR', ester
 - NH₂, amide
- These interconvert via nucleophilic acyl substitution.

Carboxylic Acid Derivatives

Structure and Bonding:

- Three resonance structures stabilize carboxylic acid derivatives (RCOZ) by delocalizing electron density.
- The more resonance structures 2 and 3 contribute to the resonance hybrid, the more stable RCOZ is.

- The more basic Z is, the more it donates its electron pair, and the more resonance structure 3 contributes to the hybrid.

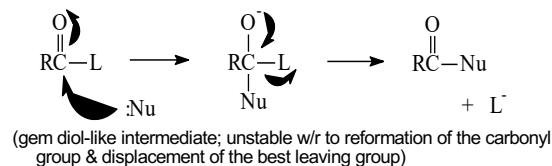

Carboxylic Acid Derivatives

- Derivatives—Nucleophilic Acyl Substitution
 - Structure and Bonding
 - Because the basicity of Z determines the relative stability of the carboxylic acid derivatives, the following stability order results:

least stabilized by resonance	$\text{R}'\text{C}(=\text{O})\text{Cl}$	$\text{R}'\text{C}(=\text{O})\text{O}'\text{C}(=\text{O})\text{R}$	$\text{R}'\text{C}(=\text{O})\text{OH}$	$\text{R}'\text{C}(=\text{O})\text{OR}'$	most stabilized by resonance
	acid chlorides	anhydrides	carboxylic acids	esters	amides

 A horizontal arrow below the table points to the right with the label 'Increasing stability'.
 - In summary, as the basicity of Z increases, the stability of RCOZ increases because of added resonance stabilization.

Carboxylic Acid Derivative Synthesis



Carboxylic Acid Derivative Synthesis

■ All have a Common Mechanism!

□ 2-step Acyl Substitution:

1. Addition to C=O (to create a tetrahedral C)
2. Elimination of the best L to reform the C=O

www.anilmishra.name

45

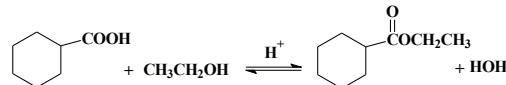
Ester

Nomenclature

- Name the R' as an alkyl group. This becomes the first part of the name.
- Name the acyl group by changing the *ic acid* ending of the parent carboxylic acid to the suffix **-ate**.

Naming esters <p>[1] Name the alkyl group. [2] Name the acyl group.</p>	<p>ethyl acetate</p>	<p>derived from cyclohexanecarboxylic acid</p>	<p>tert-butyl group</p>
--	----------------------	--	-------------------------

www.anilmishra.name

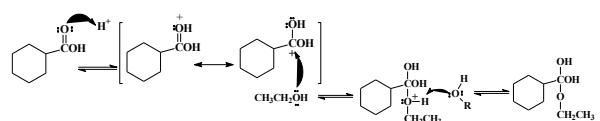

46

45

46

Fischer Esterification

- Acid + alcohol yields ester + water.
- Acid catalyzed for weak nucleophile.
- All steps are reversible.
- Reaction reaches equilibrium.



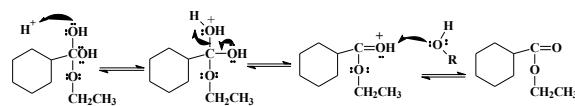
www.anilmishra.name

47

Fischer Mechanism (1)

Protonation of carbonyl and attack of alcohol, a weak nucleophile.

www.anilmishra.name

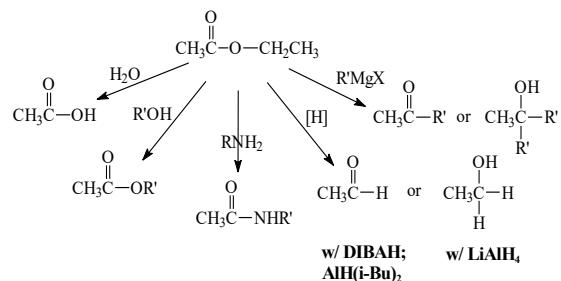

48

47

48

Fischer Mechanism (2)

Protonation of -OH and loss of water.



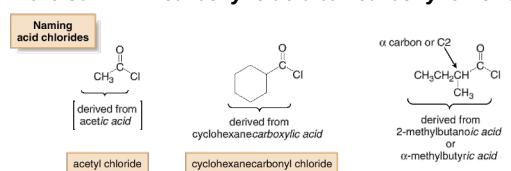
www.anilmishra.name

49

49

Reactions of Esters

www.anilmishra.name

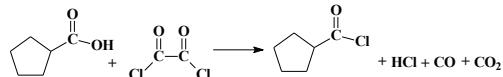

50

50

Acid Chlorides

Nomenclature: Acid Chlorides

- For acyclic acid chlorides: change the suffix *-ic acid* of the parent carboxylic acid to the suffix *-yl chloride*; or
- When the $-\text{COCl}$ group is bonded to a ring: change the suffix *-carboxylic acid* to *-carbonyl chloride*.

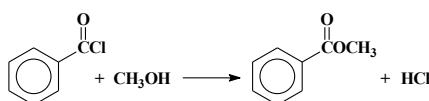

www.anilmishra.name

51

51

Acid Chlorides

- An activated form of the carboxylic acid.
- Chloride is a good leaving group, so undergoes acyl substitution easily.
- To synthesize acid chlorides use thionyl chloride or oxalyl chloride with the acid.

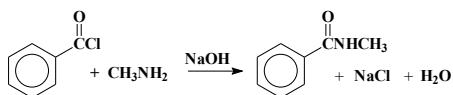

www.anilmishra.name

52

52

Esters from Acid Chlorides

- Acid chlorides react with alcohols to give esters in good yield.
- Mechanism is nucleophilic addition of the alcohol to the carbonyl as chloride ion leaves, then deprotonation.

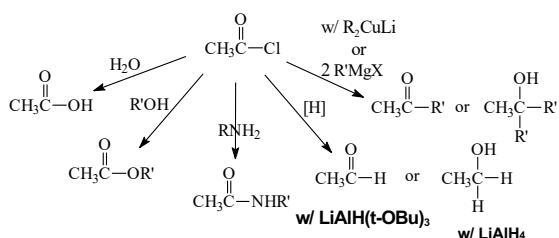


www.anilmishra.name

53

Amides from Acid Chlorides

- Acid chlorides react with ammonia and amines to give amides.
- A base (NaOH or pyridine) is added to remove HCl by-product.


www.anilmishra.name

54

53

54

Reactions of Acid Chlorides

www.anilmishra.name

55

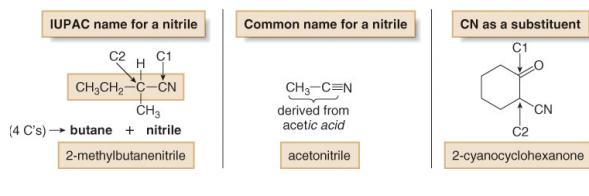
55

Nitrile

Nomenclature

- In contrast to the carboxylic acid derivatives, nitriles are named as alkane derivatives.
- Find the longest chain that contains the CN and add the word nitrile to the name of parent alkane. Number the chain to put CN at C1, but omit this number from the name.
- Common names of nitriles are derived from the names of the carboxylic acid having the same number of carbon atoms by replacing the *-ic acid* ending of the carboxylic acid with the suffix *-onitrile*.
- When the CN is named as a substituent it is called a cyano group.

www.anilmishra.name

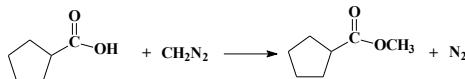

56

56

Nitrile

Nomenclature

- In naming a nitrile, the CN carbon is one carbon atom of the longest chain. $\text{CH}_3\text{CH}_2\text{CN}$ is propanenitrile, not ethanenitrile.

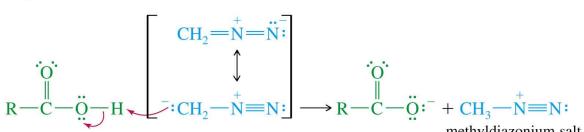


www.anilmishra.name

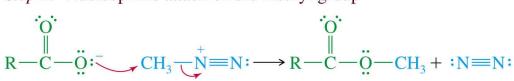
57

Diazomethane

- CH_2N_2 reacts with carboxylic acids to produce methyl esters quantitatively.
- Very toxic, explosive. Dissolve in ether.



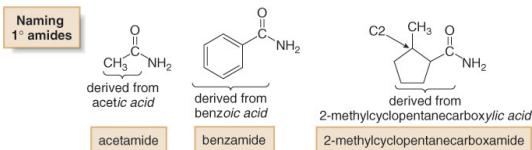
www.anilmishra.name


58

Mechanism for Diazomethane

Step 1: Proton transfer

Step 2: Nucleophilic attack on the methyl group


www.anilmishra.name

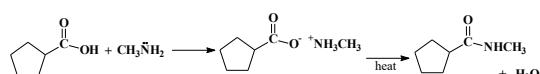
59

Amides

Nomenclature

- All 1° amides are named by replacing the *-ic acid*, *-oic acid*, or *-ylic acid* ending with the suffix **amide**.

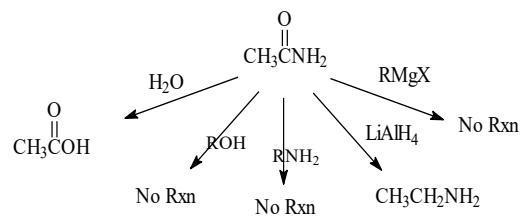
www.anilmishra.name


60

59

60

Amides from Acids


- Amine (base) removes a proton from the carboxylic acid to form a salt.
- Heating the salt above 100°C drives off steam and forms the amide.

www.anilmishra.name

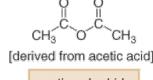
61

Reactions of Amides (unreactive)

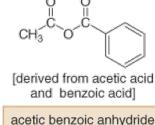
www.anilmishra.name

62

61

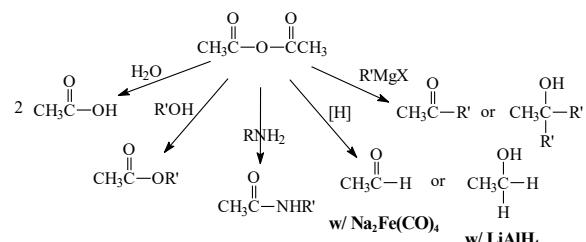

62

Anhydrides


Nomenclature: Anhydrides

- Symmetrical anhydrides are named by changing the acid ending of the carboxylic acid to the word *anhydride*.
- Mixed anhydrides, which are derived from two different carboxylic acids, are named by alphabetizing the names for both acids and replacing the word *acid* with the word *anhydride*.

Symmetrical anhydride


Mixed anhydride

www.anilmishra.name

63

Reactions of Anhydrides

www.anilmishra.name

64

63

64