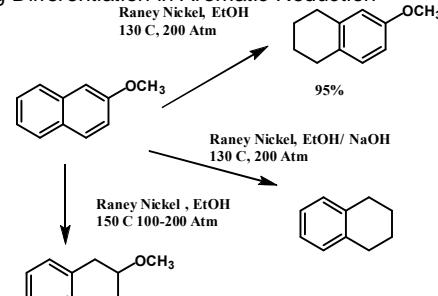


Selective Reduction

Ring Differentiation in Aromatic Reduction

**Raney Nickel, EtOH
150 C, 200 Atm**

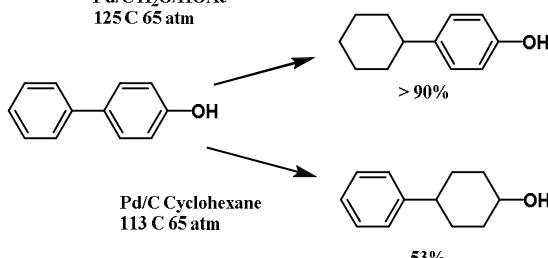


www.anilmishra.name

Selective Reduction

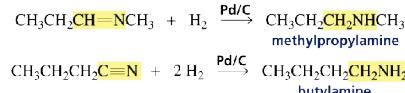
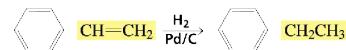
Ring Differentiation in Aromatic Reduction

Raney Nickel, E
130°C, 200 Atm

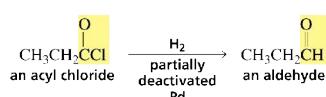
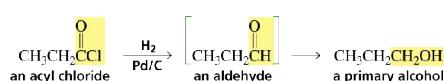


www.anilmishra.name

Selective Reduction



Ring Differentiation in Aromatic Reduction

Pd/C $\text{H}_2\text{O}/\text{HOAc}$
125°C 65 atm



www.anilmishra.name

Catalytic Hydrogenation

www.anilmishra.name

Catalytic Hydrogenation

www.anilmishra.name

Catalyst poisoning

- Catalyst poisoning refers to the partial or total deactivation of a catalyst caused by exposure to a range of chemical compounds.
 - Poisoning may be desirable when it results in improved selectivity
 - Lindlar's catalyst
 - It may be undesirable when the catalyst is rendered ineffective
 - Lead in catalytic converters
- Poisoning refers specifically to chemical deactivation, rather than other mechanism of catalyst degradation such as thermal decomposition or physical damage.

www.anilmishra.name

Catalyst Inhibitors and Poisons

- Inhibitors diminish the rate, but the effect can be reversed by washing it away.
- Poisons exert an appreciable inhibitory effect when present in small amounts.
- Both can be used to fine-tune the selectivity of a catalyst.

www.anilmishra.name

Catalyst Inhibitors and Poisons

- Metals and metals Salts
 - Mg, Ni Co have no effect on $PdCl_2$ reductions.
 - Al, Fe, Cu, Zn, Ag, Sn, Pb, Hg, Cr their oxides and carbonates inhibit Palladium.
 - Pt reductions inhibited by Al, Co, Bi.
 - Pt Reductions increased by Fe, Cu Zn, Ag, Pb
 - Raney nickel completely inhibited by mercuric chloride, but 50% inhibited by Ag_2SO_4

www.anilmishra.name

Catalyst Inhibitors and Poisons

- Halogen-Containing Compounds
 - Halide ions inhibit Ni, sometimes Pt, Pd in a concentration-dependent manner.
 - $I^- > Br^- > Cl^- > F^-$
 - Corresponding acids just as potent, if anhydrous.

www.anilmishra.name

Catalyst Inhibitors and Poisons

- Halogen-Containing Compounds
 - Non-ionizable organic halides often do not inhibit Pt and Pd, except when directly bonded to the region of reduction
 - e.g. aromatic halides reduced to cyclohexane halides
 - Potent inhibitors (Ni): carbon tet, chloroform, chloral hydrate, trichloroethanol, di- and trichloroacetic acid, alkyl chloride, benzyl chloride, and acetyl chloride.

www.anilmishra.name

Advantages of Catalytic Poisons

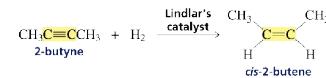
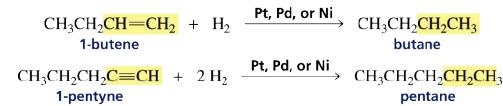
- Normally, it is not possible to stop the hydrogenation of an alkyne at the alkene stage,
- But if the catalyst is suitably deactivated, addition to the triple bond can be achieved without further addition occurring to the resulting double bond.

www.anilmishra.name

Advantages of Catalytic Poisons

- The preferred catalyst for selective hydrogenation of alkynes is palladium partially ~~poisoned~~ with a lead salt (Lindlar catalyst).
- This catalyst shows little affinity for adsorbing alkenes and hence is ineffective in bringing about hydrogenation to the alkane stage

www.anilmishra.name



Lindlar catalyst

- A Lindlar catalyst is a heterogeneous catalyst that consists of palladium deposited on calcium carbonate which is then poisoned with various forms of lead or sulphur.
- It is used for the hydrogenation of alkynes to alkenes
 - Without further reduction into alkanes
- Named after its inventor **Herbert Lindlar**

www.anilmishra.name

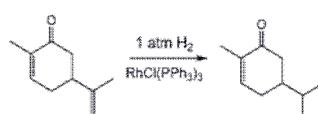
Advantages of Catalytic Poisons

Reduction by Catalytic Hydrogenation

www.anilmishra.name

Homogeneous Catalysis

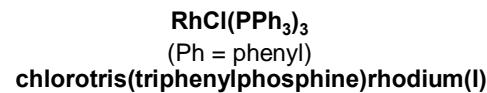
www.anilmishra.name


Homogeneous Catalysis

- Homogeneous catalysis is catalysis in a solution by a soluble catalyst.
- Homogeneous catalysis are catalytic reactions where the catalyst is in the same phase as the reactants,
 - This applies to reactions in the gas phase and even in a solid.

www.anilmishra.name

Homogeneous catalysts


- Illustrative homogeneous catalysts include the rhodium-based compound known as Wilkinson's catalyst and the iridium-based Crabtree's catalyst.
- An example is the hydrogenation of carvone

www.anilmishra.name

Wilkinson's Catalyst

- Wilkinson's catalyst is the common name for a coordination compound with the formula

- It is named after the chemist and Nobel Laureate, Sir Geoffrey Wilkinson who popularized its use.

www.anilmishra.name

Wilkinson's Catalyst


■ $\text{RhCl}(\text{PPh}_3)_3$ was the first highly active homogeneous hydrogenation catalyst and was discovered by Geoffrey Wilkinson (Nobel prize winner for Ferrocene) in 1964.

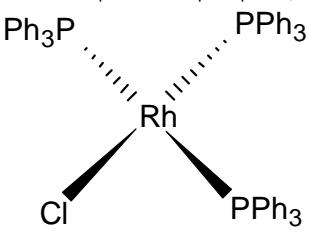
$\text{RhCl}_3 \cdot \text{H}_2\text{O} + \text{xs PPh}_3 \longrightarrow \text{RhCl}(\text{PPh}_3)_3 + \text{Ph}_3\text{P=O} + \text{oxidized solvent}$

■ Wilkinson's Catalyst is a Rh(I) complex, $\text{Rh}(\text{PPh}_3)_3\text{Cl}$ containing three phosphine ligands and one chlorine.

www.anilmishra.name

Wilkinson's Catalyst

■ As a result of the olefin insertion (hydrogen migration) we obtain a Rh (III), 16e-, five coordinate species.

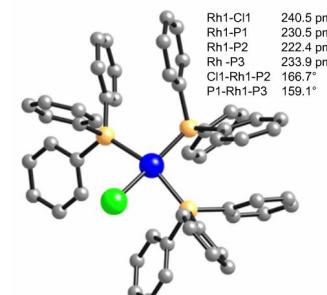

■ A solvent occupies the sixth coordination site to take it to a 18e- species

■ Reductive elimination occurs to give the hydrogenated product and the catalytically active species.

www.anilmishra.name

Wilkinson's Catalyst

■ The compound is a square planar, 16-electron complex.



Ph_3P PPh_3 Rh Cl PPh_3

Chlorotris(triphenylphosphine)rhodium(I)
square planar d^0 configuration

www.anilmishra.name

Wilkinson's Catalyst

Rh1-Cl1 240.5 pm
Rh1-P1 230.5 pm
Rh1-P2 222.4 pm
Rh1-P3 233.9 pm
Cl1-Rh1-P2 166.7°
P1-Rh1-P3 159.1°

www.anilmishra.name

Wilkinson's Catalyst

■ The compound is a square planar, 16-electron complex.

■ It is usually obtained in the form of a red-violet crystalline solid from the reaction of **rhodium(III) chloride** with excess **triphenylphosphine**.

- The synthesis is conducted in refluxing ethanol which helps with the reduction.
- Triphenylphosphine serves as the reducing agent yielding triphenylphosphine oxide.

$\text{RhCl}_3(\text{H}_2\text{O})_3 + 4 \text{ PPh}_3 \longrightarrow \text{RhCl}(\text{PPh}_3)_3 + \text{OPPh}_3 + 2 \text{ HCl} + 2 \text{ H}_2\text{O}$

www.anilmishra.name

Synthesis of Wilkinson's Catalyst

$\text{RhCl}_3 + 3 \text{ H}_2\text{O} + >4 \text{ PPh}_3 \xrightarrow[\text{78 } ^\circ\text{C}]{\text{EtOH}} \text{Rh}(\text{PPh}_3)_3 + \text{Ph}_3\text{PO}$

Commercially available

www.anilmishra.name

Catalytic Steps

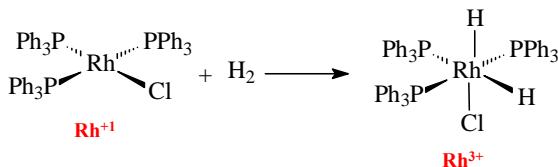
■ Oxidative Addition

- Occurs when a complex behaves simultaneously as a Lewis base and a Lewis acid
- Metal must possess a non-bonding electron pair
- Coordinatively unsaturated
- Oxidation of metal by two units . M to M^{+2}

www.anilmishra.name

Catalytic Steps

■ Ligand coordination and dissociation

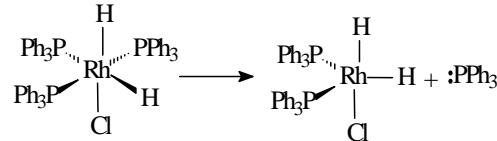

- Facile coordination of the reactant and facile loss of products.
- Coordinatively unsaturated
 - 16-electron complexes

www.anilmishra.name

Catalytic Steps 1

WC in alkene Hydrogenation

■ Oxidative addition

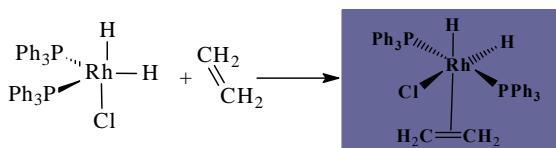


www.anilmishra.name

Catalytic Step 2

WC in alkene Hydrogenation

■ Ligand Dissociation

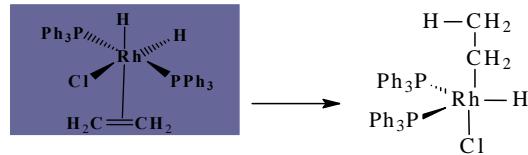


www.anilmishra.name

Catalytic Step 3

WC in alkene Hydrogenation

■ Ligand Association



www.anilmishra.name

Catalytic Step 4

WC in alkene Hydrogenation

■ Migration/Insertion

www.anilmishra.name

Catalytic Step 5

WC in alkene Hydrogenation

■ Ligand Association

www.anilmishra.name

Catalytic Step 6

WC in alkene Hydrogenation

■ Reductive Elimination

(note: regeneration of the catalyst)

www.anilmishra.name

Mechanism

■ Steps:

1. H₂ addition,
2. Alkene addition,
3. Migratory insertion,
4. Reductive elimination of the alkane, regeneration of the catalyst

$\text{RhCl}(\text{PPh}_3)_3 + \text{Solv} \rightleftharpoons \text{RhCl}(\text{Solv})(\text{PPh}_3)_2 + \text{PPh}_3$

www.anilmishra.name

Other Reactions

■ The complex RhCl(PPh₃)₃ became the first highly active homogeneous hydrogenation catalyst that compared in rates with heterogeneous counterparts.

www.anilmishra.name

Wilkinson's catalyst selectivity

The rate of hydrogenation depends on :

- presence of a functional group in the vicinity of the C=C bond
- degree of substitution of the C=C fragment

www.anilmishra.name

Wilkinson's catalyst selectivity

■ *Cis*-disubstituted C=C react faster than *trans*-disubstituted C=C:

www.anilmishra.name