

Hydride Transfer Reagents

1

www.anilmishra.name

Hydride Transfer Reagents

- Some of the most important reducing agents are hydrides derived from aluminium and boron.
 - . There are numerous varieties differing principally in their reactivity.
- They all act as sources of nucleophilic hydride and therefore are most reactive towards electrophilic species.

www.anilmishra.name

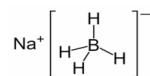
2

Hydride Transfer Reagents

- These two reagents are on the extremes of reactivity- whereas
 - . **Lithium aluminium hydride** reacts with nearly all reducible functional groups,
 - . **Sodium borohydride** reacts with a much more limited range of functional groups.

www.anilmishra.name

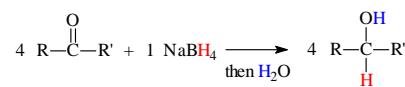
3


Sodium borohydride

www.anilmishra.name

4

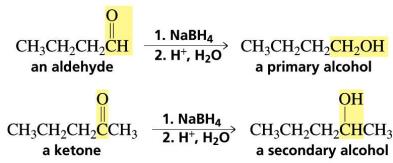
Sodium borohydride


- Sodium borohydride, also known as sodium tetrahydridoborate, and sodium tetrahydriborate is an inorganic compound with the formula NaBH_4 .
- This white solid, usually encountered as a powder, is a versatile reducing agent

www.anilmishra.name

5

Sodium borohydride

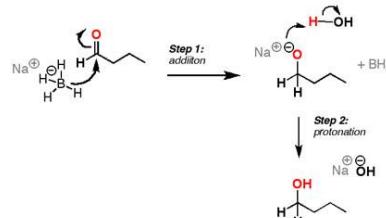

- NaBH_4 (sodium borohydride) is a versatile and useful **reducing agent** in organic chemistry.
- A reducing agent causes a reaction (a reduction) in which the product has more bonds from carbon to hydrogen (or fewer bond to oxygen)

www.anilmishra.name

6

Sodium borohydride

Reduction by Addition of a Hydride Ion and a Proton

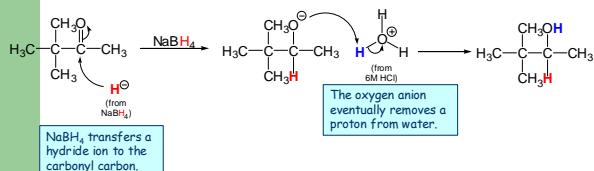

www.anilmishra.name

7

Sodium borohydride

- General Reaction Mechanism

How it works: *Reductions of aldehydes and ketones*

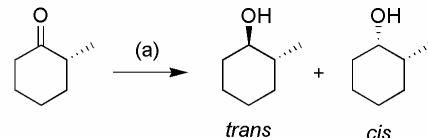


www.anilmishra.name

8

Sodium borohydride

- General Reaction Mechanism



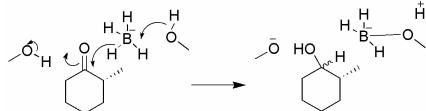
www.anilmishra.name

9

Sodium borohydride

- The Reaction

(a) NaBH_4 , MeOH , 0°C to room temperature

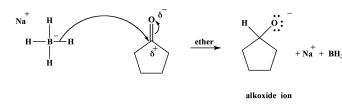

www.anilmishra.name

10

Sodium borohydride

The Mechanism

- With sodium borohydride, the attacking species is BH_4^- ion, which, in effect, transfers H^- to the carbon. Solvent (MeOH) does participate in the reaction and remains attached to the boron.



www.anilmishra.name

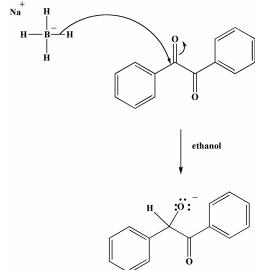
11

Sodium borohydride

- Mechanism of Hydride Reduction of Carbonyl Group

www.anilmishra.name

12

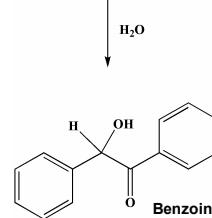


cyclopentanol

$+\text{OH}^-$

Sodium borohydride

- Reduction of Benzil (Step 1)

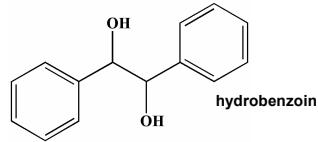


13

www.anilmishra.name

Sodium borohydride

- Reduction of Benzil (Step 2)



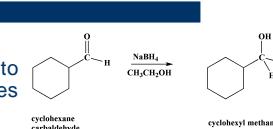
14

www.anilmishra.name

Sodium borohydride

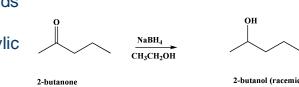
- Reduction of Benzil (Final Product)

hydrobenzoin


15

www.anilmishra.name

Sodium borohydride


Selectivity

- Reduces aldehydes to primary alcohols, ketones to secondary alcohols

Very selective:

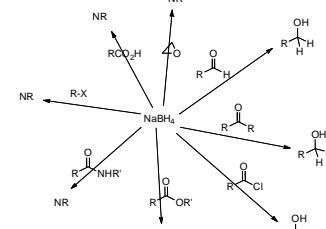
- Only reactive towards aldehydes/ketones
- Will not reduce carboxylic acids or esters

16

www.anilmishra.name

Sodium borohydride

Selectivity


- Less reactive; More selective Than LiAlH_4
- Won't reduce esters, amides, halides, epoxides, carboxylic acids

17

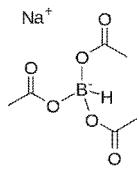
www.anilmishra.name

Sodium borohydride

www.anilmishra.name

18

Sodium borohydride Summary


- **What it's used for**

- It is a good reducing agent. Although not as powerful as lithium aluminum hydride (LiAlH_4),
- It is very effective for the reduction of aldehydes and ketones to alcohols.
- By itself, it will generally not reduce esters, carboxylic acids, or amides (although it will reduce acyl chlorides to alcohols).
- It is also used in the second step of the oxymercuration reaction to replace mercury (Hg) with H .

Sodium triacetoxyborohydride

Sodium triacetoxyborohydride

- Sodium triacetoxyborohydride, also known as sodium triacetoxyhydroborate, commonly abbreviated STAB, is a chemical compound with the formula $\text{Na}(\text{CH}_3\text{COO})_3\text{BH}$.

Sodium triacetoxyborohydride

- Like other borohydrides, it is used as a reducing agent in organic synthesis.
- This colourless salt is prepared by protonolysis of sodium borohydride with acetic acid

Sodium triacetoxyborohydride

- Owing to the steric and electronic effects of the acetoxy groups, sodium triacetoxyborohydride is a milder reducing agent than sodium borohydride
- $\text{NaBH}(\text{OAc})_3$ avoids the toxic side-products

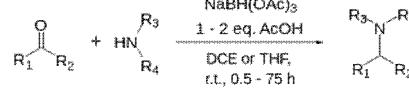
Sodium triacetoxyborohydride

- Triacetoxyborohydride is **water-sensitive** and water cannot be used as a solvent with this reagent, neither is it compatible with methanol.
- It reacts only slowly with ethanol and isopropanol and can be used with these.
- The boron-hydrogen bond is stabilized by the steric and electron-withdrawing effects of the acetoxy groups, making sodium triacetoxyborohydride a mild reducing agent.

Sodium triacetoxyborohydride

Reductive Amination

- The reductive amination of aldehydes and ketones is an important method for the synthesis of primary, secondary, and tertiary amines.
- Iminium ions can be reduced selectively in the presence of their carbonyl precursors.
- Reductive aminations are often conducted by *in situ* generation of the imine (iminium ion) intermediate in the presence of a mild acid

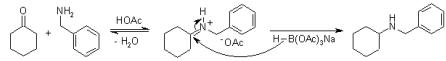

www.anilmishra.name

25

Sodium triacetoxyborohydride

Reductive Amination

- Sodium triacetoxyborohydride is especially suitable for reductive aminations of aldehydes and ketones


www.anilmishra.name

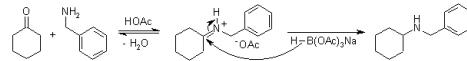
26

Sodium triacetoxyborohydride

Reductive Amination

- Since the reaction rate for the reduction of iminium ions is much faster than for ketones or even aldehydes, the reductive amination can be carried out as a one-pot procedure.

www.anilmishra.name

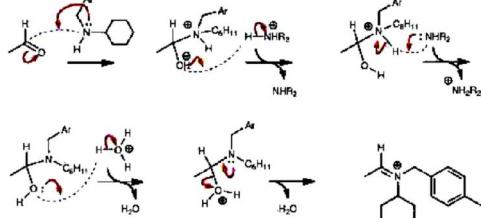

27

Sodium triacetoxyborohydride

Reductive Amination

- This is done by introducing the reducing agent into a mixture of the amine and carbonyl compound.

The presence of a stoichiometric amount of acetic acid, which catalyzes the imine formation and provides the iminium ion, doesn't present any problem under these

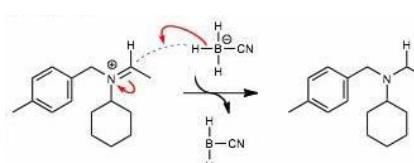


www.anilmishra.name

28

Reductive Amination Mechanism

Imine Formation



www.anilmishra.name

29

Reductive Amination Mechanism

Reduction

www.anilmishra.name

30

Lithium Aluminum Hydride

www.anilmishra.name

31

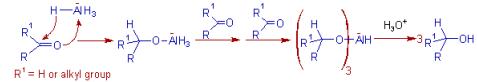
Lithium Aluminum Hydride

- Lithium aluminum hydride (LAH) is a strong reducing agent with chemical formula LiAlH_4 .
- It can reduce a variety of functional groups such as aldehydes, esters, acids, ketones, nitriles, epoxides and azides.
- It vigorously reacts with water and all the reactions are performed in polar aprotic solvents.

www.anilmishra.name

32

Lithium Aluminum Hydride

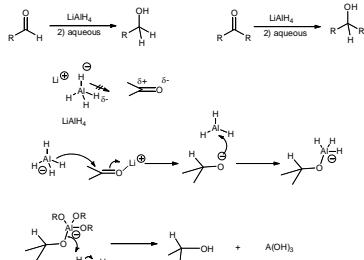

- The reduction of a carbonyl group by LiAlH_4 is initiated by the attack of nucleophilic hydride ion on the carbonyl carbon to give a tetrahedral intermediate.
- LiAlH_4 is a nucleophilic reducing agent since the hydride transfer to the carbonyl carbon occurs prior to the coordination to the carbonyl oxygen.
- It reacts faster with electron deficient carbonyl groups. The reactivity of carbonyl compounds with this reagent follows the order:
 - Aldehydes > Ketones > ester > amide > carboxylic acid

www.anilmishra.name

33

Lithium Aluminum Hydride

- Reduction of Aldehydes or Ketones to 1° or 2° alcohols:**
 - Initially, a hydride ion is transferred onto the carbonyl carbon and the oxygen atom coordinates to the remaining aluminium hydride species to furnish an alkoxytrihydroaluminate ion, which can reduce the next carbonyl molecule. Thus three of the hydride ions are used up in reduction.

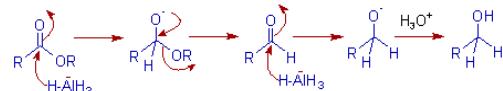


www.anilmishra.name

34

Lithium Aluminum Hydride

- Reduction of Aldehydes and Ketones



www.anilmishra.name

35

Lithium Aluminum Hydride

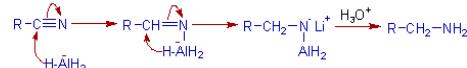
- Reduction of Esters to 1° alcohols:** The ester is first converted to aldehyde which is further reduced to primary alcohol.

www.anilmishra.name

36

Lithium Aluminum Hydride

- Reduction of Amides to amines:** Amides are converted to amines. The mechanism is slightly different from that depicted for esters. In iminium ion is formed during the reaction since nitrogen atom is relatively a good donor than oxygen atom.

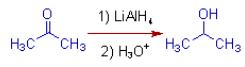
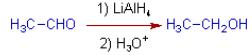


www.anilmishra.name

37

Lithium Aluminum Hydride

- Reduction of nitriles to primary amines:**

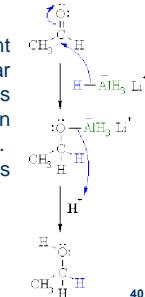



www.anilmishra.name

38

Lithium Aluminum Hydride

- The aldehydes or ketones are reduced by LiAlH_4 to the corresponding primary or secondary alcohols respectively.
 - E.g. Acetaldehyde is reduced to ethyl alcohol and acetone is reduced to isopropyl alcohol.

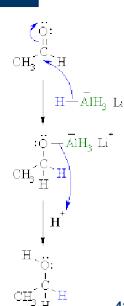

www.anilmishra.name

39

Nucleophilic Addition of LiAlH_4 to Aldehyde

Step 1:

- The nucleophilic H in the hydride reagent adds to the electrophilic C in the polar carbonyl group in the aldehyde, electrons from the C=O move to the O creating an intermediate metal alkoxide complex. (note that in principle all 4 of the H atoms can react)

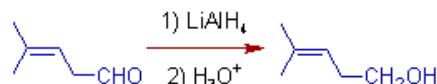

www.anilmishra.name

40

Nucleophilic Addition of LiAlH_4 to Aldehyde

Step 2:

- This is the work-up step, a simple acid/base reaction.
- Protonation of the alkoxide oxygen creates the primary alcohol product from the intermediate complex.

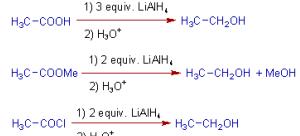


www.anilmishra.name

41

Lithium Aluminum Hydride

- LiAlH_4 does not affect the isolated carbon-carbon double or triple bonds.

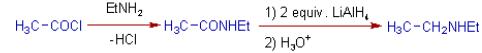


www.anilmishra.name

42

Lithium Aluminum Hydride

- The carboxylic acids, esters and acid halides are reduced to corresponding primary alcohols by Lithium aluminium hydride.
- E.g. The reduction of Acetic acid, methyl acetate and acetyl chloride by LiAlH_4 furnish the same ethyl alcohol.

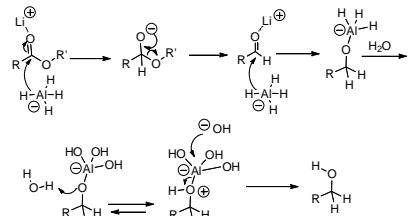


www.anilmishra.name

43

Lithium Aluminum Hydride

- The **amides** are reduced to amines by LAH. Especially this method is used to get secondary amines.
- E.g. Diethyl amine can be prepared starting from acetyl chloride as follows:

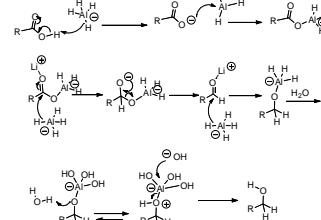


www.anilmishra.name

44

Lithium Aluminum Hydride

Esters and acid chlorides

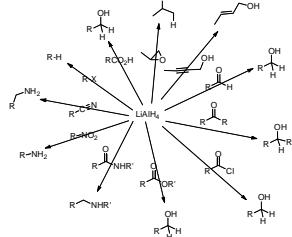


www.anilmishra.name

45

Lithium Aluminum Hydride

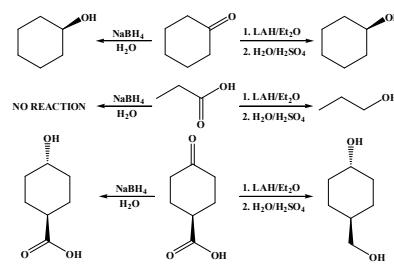
Aldehyde intermediate is more reactive than carboxylic acid and is immediately reduced to alcohol



www.anilmishra.name

46

Lithium Aluminum Hydride


Strong reducing agent. Not very selective

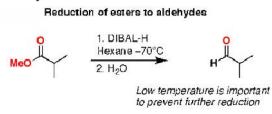
www.anilmishra.name

47

$\text{NaBH}_4/\text{LiAlH}_4$ Comparison

www.anilmishra.name

48

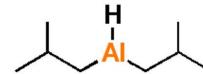

Di-isobutyl Aluminum Hydride DIBAL - H

www.anilmishra.name

49

Di-isobutyl Aluminum Hydride

- Like Lindlar's catalyst, DIBAL is most notable for what it does not do.
 - It reduces esters, but not to alcohols . it stops at the aldehyde stage.
 - Keeping the temperature low (. 70°C) tends to keep a lid on the reactivity here. So long as the temperature is kept here for the duration of the experiment and only one equivalent of DIBAL is added, the aldehyde is obtained.


www.anilmishra.name

51

Di-isobutyl Aluminum Hydride

What it's used for:

- DIBAL is a strong, bulky reducing agent. It's most useful for the reduction of esters to aldehydes.
- Unlike lithium aluminum hydride, it will not reduce the aldehyde further if only one equivalent is added.
- It will also reduce other carbonyl compounds such as amides, aldehydes, ketones, and nitriles.

www.anilmishra.name

50

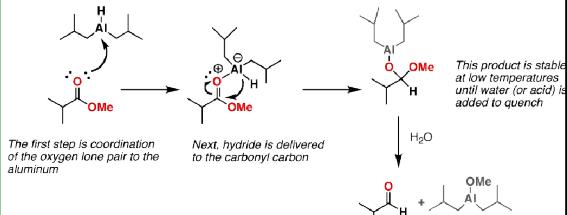
Di-isobutyl Aluminum Hydride

- The mechanism for reduction by DIBAL is a little bit unusual compared to NaBH_4 .
- Whereas NaBH_4 is considered a **%nucleophilic" reductant** . that is, it delivers hydride (H^-) directly to a carbonyl carbon, DIBAL is an **%electrophilic" reductant**.

www.anilmishra.name

53

Di-isobutyl Aluminum Hydride

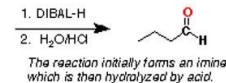

- The first step in the reaction is coordination of a lone pair from the carbonyl oxygen (a nucleophile) to the aluminum (electrophile).
- It is only after coordinating to its carbonyl host that DIBAL delivers its hydride to the carbonyl carbon, resulting in formation of a neutral hemiacetal intermediate that is stable at low temperatures
- Quenching of the reaction then breaks down the hemiacetal, resulting in isolation of the aldehyde.

www.anilmishra.name

54

Di-isobutyl Aluminum Hydride

- Mechanism

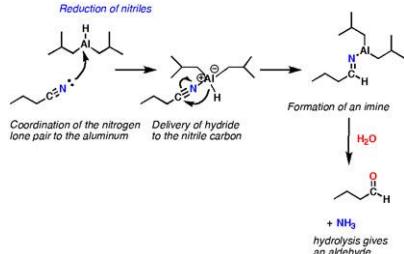

www.anilmishra.name

55

Di-isobutyl Aluminum Hydride

- DIBAL will also do partial reductions of nitriles to imines. The imines are then hydrolyzed to aldehydes upon addition of water. In this respect DIBAL again differs from LiAlH₄, which will reduce nitriles all the way to amines.

Reduction of nitriles to imines



www.anilmishra.name

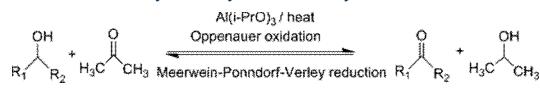
56

Di-isobutyl Aluminum Hydride

- Mechanism

www.anilmishra.name

57

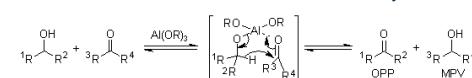

Meerwein–Ponndorf–Verley reduction

www.anilmishra.name

58

Meerwein–Ponndorf–Verley reduction

- The Meerwein–Ponndorf–Verley (MPV) reduction in organic chemistry is the reduction of ketones and aldehydes to their corresponding alcohols utilizing aluminium alkoxide catalysis in the presence of a sacrificial alcohol.
- The beauty of the MPV reduction lies in its high chemoselectivity, and its use of a cheap, environmentally friendly metal catalyst.

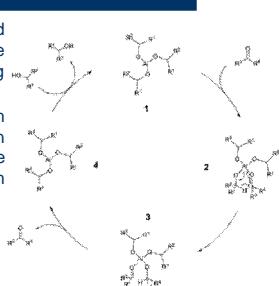


www.anilmishra.name

59

Meerwein–Ponndorf–Verley reduction

- It is the aluminium-catalyzed hydride shift from the α -carbon of an alcohol component to the carbonyl carbon of a second component.
This proceeds via a six-membered transition state
- The reverse reaction is called **Oppenauer Oxidation**
- If the alcohol is the desired product, the reaction is viewed as the Meerwein–Ponndorf–Verley Reduction.

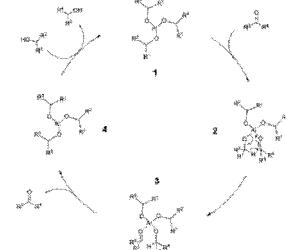


www.anilmishra.name

60

Meerwein–Ponndorf–Verley reduction

- The MPV reduction is believed to go through a catalytic cycle involving a six-member ring transition state.
- Starting with the aluminium alkoxide 1, a carbonyl oxygen is coordinated to achieve the tetra coordinated aluminium intermediate 2.



www.anilmishra.name

61

Meerwein–Ponndorf–Verley reduction

- Between intermediates 2 and 3 the hydride is transferred to the carbonyl from the alkoxy ligand via a pericyclic mechanism.
- At this point the new carbonyl dissociates and gives the tricoordinated aluminium species 4.
- Finally, an alcohol from solution displaces the newly reduced carbonyl to regenerate the catalyst 1.

www.anilmishra.name

62

Meerwein–Ponndorf–Verley reduction

- Each step in the cycle is reversible and the reaction is driven by the thermodynamic properties of the intermediates and the products.
- This means that given time the more thermodynamically stable product will be favored.

www.anilmishra.name

63

Meerwein–Ponndorf–Verley reduction

Chemosselectivity

- One of the great draws of the Meerwein–Ponndorf–Verley reduction is its chemoselectivity.
 - Aldehydes are reduced before ketones allowing for a measure of control over the reaction.
 - If it is necessary to reduce one carbonyl in the presence of another, the common carbonyl protecting groups may be employed.
 - Groups, such as alkenes and alkynes, that normally pose a problem for reduction by other means have no reactivity under these conditions.

www.anilmishra.name

64